Згрлс волна. Развитие загоризонтной радиолокации в сша. Радиолокационные системы как комплекс радиоэлектронных устройств, решающих задачи обнаружения различных объектов в пространстве. Основные особенности проблем загоризонтной радиолокации. Особенности п

Если название Чернобыль знаком сегодня практически каждому, а после катастрофы на АЭС и вовсе стало именем нарицательным, прогремевшим на весь мир, то о объекте Чернобыль-2 мало кто слышал. При этом данный городок находился в непосредственной близости от Чернобыльской АЭС, но найти его на топографической карте было невозможно. Исследуя карты того периода, вы, скорее всего, найдете обозначение пансионата для детей или пунктирные линии лесных дорог на том месте, где размещался этот небольшой город. В СССР умели хранить и прятать тайны, особенно в том случае, если они были военными.

Лишь с развалом СССР и аварией на Чернобыльской АЭС о существовании в полесских лесах небольшого города (военного гарнизона), который занимался «космическим шпионажем», появилась хоть какая-то информация. В 1970-х годах советскими учеными были разработаны уникальные радиолокационные системы, которые позволяли следить за пусками баллистических ракет с территории вероятного противника (подводных лодок и военных баз). Разработанный радар относился к загоризонтным радиолокационным станциям (ЗРГЛС). Обладая огромными размерами принимающих антенн и мачт, ЗГРЛС требовала большого человеческого ресурса. На объекте несли боевое дежурство около 1000 военных. Для военных, а также членов их семей был построен целый небольшой городок, имеющий одну улицу, которая носила название Курчатова.


Проводники по чернобыльской зоне отчуждения, которых привыкли называть «сталкерами», любят рассказывать одну байку 25-летней давности. После того, как СССР признал факт аварий на ЧАЭС, в зону отчуждения хлынул поток журналистов со всего мира. Среди первых приехавших сюда западных журналистов, которых допустили к месту катастрофы, был легендарный американец Фил Донахью. Проезжая возле села Копачи, он из окна автомобиля заметил объекты внушительных размеров, которые значительно возвышались над лесным массивом и вызвали вполне оправданное любопытство с его стороны. На его вопрос: «что это?», сопровождавшие группу сотрудники органов безопасности только молча переглядывались между собой, пока один из них не придумал подходящий ответ. Согласно легенде он пояснил, что это недостроенная гостиница. Донахью этому естественно не поверил, но проверить свои подозрения никак не мог, в доступе к данному объекту ему было отказано в категоричной форме.

В этом нет ничего странного, так как «недостроенная гостиница» была своеобразной гордостью советской оборонной промышленности и автоматически одним из самых секретных объектов. Это была загоризонтная радиолокационная станция Дуга-1, известная также как объект «Чернобыль-2» или же просто Дуга. «Дуга» (5Н32) – советская ЗГРЛС, работающая в интересах системы раннего обнаружения запусков межконтинентальных баллистических ракет (МБР). Главной задачей данной станции было раннее обнаружение пусков МБР, причем не только на территории Европы, но и «за горизонтом» на территории США. В те годы ни одна из мировых станций не имели таких технологических возможностей.

На сегодняшний день технологией, которая была бы наиболее схожей с той, что использовалась на советских ЗГРЛС, обладает лишь американская HAARP (программа высокочастотных активных авроральных исследований). Согласно официальной информации данный проект направлен на изучение полярных сияний. При этом по неофициальной информации данная станция, находящаяся на Аляске, является секретным американским , с помощью которого Вашингтон может контролировать разнообразные климатические явления на планете. В интернете различные спекуляции на данную тему не утихают уже который год. Стоит отметить, что подобные «теории заговора» окружали и отечественную станцию «Дуга». При этом первая станция из линейки HAARP была введена в эксплуатацию лишь в 1997 году, тогда как в СССР первый объект подобного типа появился в Комсомольске-на-Амуре еще в 1975 году.

В то время как жители Чернобыля, как они думали, работали с мирным атомом, обитатели их города-тезки, более 1000 человек, занимались, по сути, космическим шпионажем в планетарном масштабе. Одним из главных аргументов при размещении ЗГРЛС в Чернобыльском полесье было наличие рядом Чернобыльской АЭС. Советский суперлокатор предположительно потреблял до 10 мегаватт электроэнергии. Генеральным проектировщиком ЗГРЛС являлся НИИДАР – Научно-исследовательский институт дальней радиосвязи. Главным конструктором был инженер Франц Кузьминский. Стоимость работ по строительству данного сверхмощного радара в разных источниках указывается различной, но при этом известно, что постройка «Дуги-1» обошлась СССР в 2 раза дороже, чем ввод в эксплуатацию 4-х энергоблоков ЧАЭС.


Важно отметить тот факт, что ЗГРЛС, расположенная в Чернобыле-2, была предназначена лишь для приема сигнала. Передающий центр располагался в непосредственной близости от села Рассудов возле города Любеч в Черниговской области на удалении в 60 км. от Чернобыля-2. Передающие сигнал антенны также были выполнены по принципу фазированной антенной решетки и были ниже и меньше, их высота составляла до 85 метров. Сегодня данный радар уничтожен.

Небольшой городок Чернобыль-2 достаточно быстро вырос по соседству с законченной в рекордные сроки сверхсекретной стройкой. Его население, как уже говорилось, составляло не менее 1000 жителей. Все они работали на станции ЗГРЛС, которая, помимо оборудования, включала в себя 2-е гигантских антенны – высокочастотную и низкочастотную. Если судить по имеющимся снимкам из космоса, длина высокочастотной антенны составляла 230 метров, а высота – 100 метров. Низкочастотная антенная была еще более внушительным сооружением, ее длина составляла 460 метров, а высота почти 150 метров. Это по-настоящему уникальное, не имеющее аналогов в мире чудо инженерной мысли (сегодня антенны демонтированы лишь частично) способно было накрыть своим сигналом практически всю планету и моментально засечь массовый пуск баллистических ракет с любого континента.

Правда стоит отметить, что практически сразу после ввода данной станции в опытную эксплуатацию, а произошло это 31 мая 1982 года, были отмечены некоторые проблемы и неувязки. Во-первых, данная РЛС могла улавливать лишь большое скопление целей. Такое могло произойти только в случае нанесения массированного ядерного удара. При этом комплекс не мог отслеживать пуск единичных целей. Во-вторых, многие диапазоны частот, на которых функционировала ЗГРЛС, совпадали с системами гражданской авиации и гражданского рыболовного флота СССР и европейских государств. Представители различных стран вскоре начали жаловаться на помехи в работе систем своих систем радио-оборудования. При начале работы станции ЗГРЛС в эфире практически по всему миру начинали звучать характерные стуки, которые заглушали собой высокочастотные передатчики, а иногда даже телефонные переговоры.


Несмотря на то, что «Чернобыль-2» был сверхсекретным объектом, в Европе достаточно быстро разобрались в причинах помех, прозвали советскую станцию «русским дятлом» за характерные звуки в эфире и предъявили претензии советскому правительству. СССР получил ряд официальных заявлений от западных государств, в которых отмечалось, что созданные в Советском Союзе системы в значительной мере влияют на безопасность морского судоходства и авиации. В ответ на это СССР пошел на уступки со своей стороны и прекратил применять рабочие частоты. Одновременно с этим конструкторам была поставлена задача, им предписывалось устранить выявленные недостатки радарной станции. Конструкторы совместно с учеными смогли решить поставленную задачу, и после выполнения модернизации ЗГРЛС в 1985 году начала проходить процедуру государственной приемки, которая была прервана аварией на Чернобыльской АЭС.

После авария, которая произошла на ЧАЭС 26 апреля 1986 года, станция была снята с боевого дежурства, а ее оборудование подверглось консервации. Гражданское и военное население с объекта было в срочном порядке эвакуировано из зоны, которая подверглась радиационному заражению. Когда военные и руководство СССР смогли оценить все масштабы случившейся экологической катастрофы и тот факт, что объект «Чернобыль-2» больше не может быть запущен, было принято решение о вывозе ценных систем и оборудования в город Комсомольск-на-Амуре, произошло это в 1987 году.


Таким образом, уникальный объект советского оборонного комплекса, который был частью космического щита советского государства, прекратил свое функционирование. Город и городская инфраструктура были забыты и заброшены. В настоящее время о былой мощи сверхдержавы на данном заброшенном объекте напоминают лишь огромные антенны, которые не потеряли своей устойчивости и по сей день, привлекая к себе внимание редких в этих местах туристов. Обладая просто колоссальными размерами, антенны данной станции видны практически с любого места Чернобыльской зоны отчуждения.

Источники информации:
- http://tainy.info/world-around/chernobyl-2-ili-russkij-dyatel/
- http://chornobyl.in.ua/chernobyl-2.html
- http://lplaces.com/ru/reports/12-chornobyl-2

Следует рассказать о тех системах, с помощью которых в ближайшем будущем будет создано сплошное поле радиолокационного контроля воздушно-космического пространства страны. А также будет осуществляться контроль воздушного пространства сопредельных стран. Причём на всех высотах - от самой поверхности до ближнего космоса.

Задача эта нетривиальная, учитывая огромные пространства нашей страны. Решить её можно с помощью нетривиальных же технических средств. И такие средства у нас есть. 2 декабря этого года в Мордовии на опытно-боевое дежурство заступила РЛС загоризонтного обнаружения нового поколения 29Б6 «Контейнер» .

Это первый узел создаваемой сети станций разведки и предупреждения о воздушно-космическом нападении. Система будет построена на основе новых радиолокационных станций (РЛС), в том числе и загоризонтных (ЗГРЛС) 29Б6. В чём их принципиальное отличие от других РЛС?

Прежде всего - в дальности действия. ЗГРЛС «Контейнер» способна обнаруживать цели на дальности около 3000 км . Причём как цели на высотах до100 км, так и низколетящие цели у самой земли или поверхности моря! Станция, заступившая на дежурство близ города Ковылкино (в 100 км от столицы Мордовии Саранска), в западном направлении способна просматривать всю территорию Польши и Германии. А поскольку станция имеет гигантский сектор обзора - 180 градусов, - в зону контроля попадает вся Турция, Сирия и Израиль на юге; всё Балтийское море и Финляндия на северо-западе. Как такое возможно? Чтобы в этом разобраться, придётся немного остановиться на технических подробностях.

Станции 29Б6 относятся к так называемым загоризонтным станциям поверхностной волны . Её принцип действия отличается от надгоризонтных станций. Как известно, Земля имеет форму шара. По этой причине обычная РЛС - не «видит» то, что происходит у поверхности земли, за пределами радиогоризонта (зоны прямой радиовидимости). Мощные РЛС способны отслеживать цели на огромных дальностях и высотах, в том числе и в космосе. Но не на низких высотах - зона прямой радиовидимости ограничивается всего лишь десятками километров. Размещение РЛС на возвышенностях и мачтовых устройствах, конечно, позволяет расширить радиогоризонт. Но всё равно лишь на дальность до100 км.

Приподнять РЛС выше над горизонтом могут только самолёты дальнего радиолокационного обнаружения (ДРЛО). Но у них тоже есть существенные недостатки. Мощность сигнала «воздушных радаров», качество приёма и обработки отражённых сигналов - ограничены весом аппаратуры, которую способен поднять в воздух самолёт. Кроме того, самолёт ДРЛО достаточно уязвим для наземных средств радиоэлектронной борьбы и различных средств поражения.

ЗГРЛС поверхностной волны способна заглядывать далеко за горизонт, при этом не поднимаясь в воздух . Такая станция излучает радиосигнал вверх. Отражаясь от ионосферы Земли как от зеркала, сигнал снова уходит к земной (или водной) поверхности, но уже далеко за горизонтом. Достигнув земли, радиосигнал рассеивается, но небольшая часть сигнала возвращается назад (также отражаясь от ионосферы) к приёмным устройствам РЛС.

Приёмная часть ЗГРЛС может находиться довольно далеко от излучающей . Так, в Мордовии находится приёмная часть новой ЗГРЛС и аппаратная часть выделения и обработки полезного сигнала. А излучающая часть - в Нижегородской области. В целом это достаточно крупные сооружения. Они состоят из десятков антенно-фидерных мачт, имеющих высоту более30 метров. В Ковылкино линия таких мачт растянулась почти на полтора километра. Несмотря на это, ЗГРЛС вполне мобильна.

Антенно-мачтовые системы могут достаточно быстро собираться на оборудованных площадках. А вся аппаратура, включая мощный вычислительный комплекс, размещается в транспортируемых контейнерах. Благодаря тому, что ЗГРЛС «Контейнер» не требует строительства специальных капитальных сооружений, ввод в строй новых станций может происходить достаточно быстро.

ЗГРЛС 29Б6 «Контейнер» работает на коротких радиоволнах (декаметровых, от 3 до 30 МГц) . Именно они отражаются от ионосферы с малыми потерями. Для волн такой длины не существует так называемой «технологии стелс» (технологии пассивного снижения радиозаметности). Любой «малозаметный» летательный аппарат, крылатая ракета или корабль будут давать отличный отражённый сигнал, к тому же усиленный вторичным излучением (переотражениями внутри конструкции).

Сама идея загоризонтной локации не нова. Её предложил ещё в 1946 году советский учёный и конструктор Николай Кабанов. Но реализация идеи оказалась связанной с большим объёмом научной и технической работы. И к станции «Контейнер» мы шли долгим и непростым путём. Позволим себе небольшой исторический экскурс.

Первая экспериментальная ЗГРЛС появилась у нас в начале 60-х годов в районе города Николаев . В 1964 г. она впервые обнаружила ракету, стартовавшую с Байконура, на дальности 3000 км. А затем были построены и две боевые ЗГРЛС «Дуга» - одна близ Чернобыля (в начале 70-х), другая в районе Комсомольска-на-Амуре (в начале 80-х). Они должны были входить в систему предупреждения о ракетном нападении и были направлены на Северную Америку (только с разных сторон земного шара).

Две «Дуги», дублируя друг друга, контролировали всю территорию США и обширные прилегающие пространства. Они должны были обнаруживать пуски баллистических ракет у самой поверхности Земли, чтобы ответный ядерный удар был нанесён раньше. Дальность их действия достигала фантастических10.000 км. Она достигалась благодаря многократному отражению сигнала от ионосферы и поверхности Земли.

РЛС загоризонтного обнаружения 29Б6 «Контейнер»

Впрочем, такие «многоскачковые» ЗГРЛС имели существенный недостаток. Они не обладали точностью. «Дуги» не позволяли точно определять координаты целей из-за того, что луч несколько раз «бился» об ионосферу. Дополнительные искажения в работу «Дуг» вносили хаотические возмущения ионосферы, которые тогда были слабо изучены, а компенсация этих искажений ещё не была отработана.

Строительство боевых «Дуг» было начато до завершения экспериментов на опытной станции в Николаеве, когда ещё не был накоплен достаточный опыт загоризонтной локации. К тому же уже в конце 80-х американцы построили в Норвегии, а затем и в Японии и на Аляске мощные излучающие системы. Они должны были создавать нелинейные эффекты в ионосфере, мешающие нормальному функционированию ЗГРЛС. С этими эффектами научились бороться, правда, не сразу.

Но, тем не менее, «Дуги» так и не были приняты на вооружение . А система раннего предупреждения обходилась надгоризонтными станциями, которые могли обнаруживать не взлетающие баллистические ракеты, а только их атакующие боевые блоки. Сейчас обнаружение пусков баллистических ракет в системе предупреждения о ракетном нападении выполняет космический эшелон в составе спутниковой группировки.

Стоит сказать, что ЗГРЛС «Дуга» всё же оставила свой след в истории. Она породила массу сказок о «психотронном излучении» и «климатическом оружии». Дело в том, что начало работы «странной советской радиостанции» (в 1976 году) невозможно было не заметить. Мощность сигнала была такова, что он принимался обычными радиоприёмниками по всему миру. Он был слышен как пульсирующий стук, благодаря которому станция быстро получила прозвище «Русский дятел». Вдобавок «Дуга» нарушала радиосвязь, поскольку работала на частотах, которые активно использовались по всему миру.

США, Великобритания и Канада даже выражали Советскому Союзу протест, правда, без какого-либо результата. При этом назначение столь странного радиосигнала долго оставалось загадкой. Естественно, заголовки западной прессы быстро заполнились предположениями, что «русские хотят воздействовать на сознание людей во всём мире ». А известие, что сигнал направлен на ионосферу, быстро привёл к предположениям о воздействии «коварных русских» на климат Земли. Отголоски этих небылиц и сегодня будоражат умы, в том числе и у нас.

Второй загоризонтной системой, уже гораздо более совершенной, стали станции «Волна» . Их появление было бы невозможно без участия выдающегося советского государственного деятеля - главкома ВМФ Сергея Георгиевича Горшкова. Сложности с первыми ЗГРЛС привели к скептическому отношению к ним у советского руководства. Тогда как Сергей Георгиевич был настоящим подвижником прорывных военных технологий. Его стараниями на флоте были испытаны первые боевые лазерные системы и системы, использующие электромагнитные импульсы как поражающий фактор. Хотя действительно эффективные образцы такого оружия появляются только сегодня, к заслуге советского главкома ВМФ следует отнести то, что он не боялся взять на себя ответственность, давая ход разработкам, которые казались тогда фантастическими.

Станции «Волна» конструировалась в интересах флота. Она предназначалась для контроля надводной и воздушной обстановки в ближней 200-мильной зоне и радиолокационной разведки в дальней зоне до 3000 км . «Волна» не должна была «освещать» территорию США, поэтому работала в пределах одного отражения сигнала от ионосферы. Это позволило добиться большой точности получаемых данных о целях, недостижимой для станций предыдущего поколения.

Загоризонтный радиолокатор дальней зоны «Волна» (ГП-120)

В 1986 году станция «Волна» начала работать в экспериментальном режиме на Дальнем Востоке (недалеко от Находки) . Она постоянно совершенствовалась, модернизировался её программно-алгоритмический комплекс, повышался энергетический потенциал. К 1990 году станция устойчиво обнаруживала и сопровождала авианесущие группировки США в Тихом океане на дальностях гораздо выше3000 км, а отдельные воздушные цели ― на дальностях до2800 км.

В 1999 году на Камчатке, также в интересах флота, была построена новая ЗГРЛС «Телец» . Она использует сигнал меньшей мощности и служит для обнаружения кораблей и воздушных целей на дальности до250 км. Развитием «Тельца» стали береговые ЗГРЛС «Подсолнух», которые строятся сейчас в различных частях нашей страны и даже предлагаются на экспорт. Дальность их действия составляет около450 км.

Ну и наконец, вслед за флотом новые загоризонтные станции появляются и в войсках ПВО/ВКО . Станция 29Б6 «Контейнер» является развитием флотской «Волны». Она начала функционировать в экспериментальном режиме ещё в 2002 году. С этого времени был накоплен огромный опыт загоризонтной радиолокации, а технические средства самой станции неоднократно модернизировались.

В настоящий момент все основные режимы её использования отработаны, а на Дальнем Востоке начата подготовка к возведению уже серийной станции «Контейнер». Всего будет построено более десяти подобных станций, что позволит в короткие сроки покрыть сплошным радиолокационным полем всю территорию страны и обширное прилегающее воздушно-космическое пространство.

Вторая часть статьи посвящённой способам увидеть что там за горизонтом.
Прочитав комментарии к , решил более подробно рассказать о СДВ связи и РЛС на принципах "небесного луча", о РЛС работающие на принципах "земного луча" будет в следующей статье, уж если рассказывать то рассказывать последовательно.

Загоризонтные РЛС, попытка инженера обьяснить сложное по простому. (часть вторая) "Русский дятел", "Зевс" и "Антей".

ВМЕСТО ПРЕДИСЛОВИЯ

В первой части статьи я рассказал основы необходимые для понимания. Поэтому если вдруг что то стало непонятно, читайте её, узнаете что-то новое или освежите забытое. В этой части решил перейти от теории к конкретике и вести рассказ опираясь на реальные образцы. Для примеров, во избежании вбросов, дезинформации и разжигании пуканов диванных аналитиков, буду использовать системы которые давно поставлены в строй и не являются секретными. По скольку это не является моей специализацией, я рассказываю то что узнал в бытность мою студентом от преподов, на предмете "Основы Радиолокации и Радионавигации", и то что нарыл по разным источникам на просторах паутины. Комрады хорошо подкованные в этой теме, если найдёте неточность, конструктивная критика всегда приветствуется.

"РУССКИЙ ДЯТЕЛ" ОН ЖЕ "ДУГА"

"ДУГА" является первой загоризонтной РЛС в союзе (не путать с надгоризонтными) предназначенной для обнаружения пусков баллистических ракет. Известно о трех станциях этой серии: Экспериментальная установка «ДУГА-Н» возле Николаева, "ДУГА-1" в посёлке Чернобыль-2, "ДУГА-2" в посёлке Большая Картель рядом с Комсомольском-на-Амуре. На данный момент все три станции выведены из эксплуатации их электронное оборудование демонтировано, также демонтированы антенные решетки кроме станции находящийся в Чернобыле. Антенное поле станции "ДУГА" одно из самых заметных сооружений в зоне отчуждения после здания самой ЧАЭС.

Антенное поле "ДУГИ" в Чернобыле, хотя оно больше похоже на стенку)

Станция работала в КВ диапазоне на частотах 5-28МГц. Обратите внимание что на фото видно, грубо говоря, две стены. По скольку нельзя было создать одну достаточно широкополосную антенну, было принято решения разбить рабочий диапазон на две антенны, каждая рассчитанная на свою полосу частот. Сами антенны не являются одной цельной антенной а состоят из множества относительно небольших антенн. Такая конструкция называется Фазированной Антенной Решёткой (ФАР). На фото с низу одни сегмент такой ФАР:

Так выглядит один сегмент ФАР "ДУГИ", без несущих конструкций.


Расположение отдельных элементов на несущей конструкции

Пару слов о том что такое ФАР. Некоторые просили меня описать что это такое и как это работает, уже думал начать, но пришёл к выводу что придётся это делать в виде отдельной статьи, так как нужно рассказать кучу теории для понимания, так что статья про ФАР будет в будущем. А если в двух словах то: ФАР позволяет принимать радиоволны приходящие на неё с определённого направления и отфильтровывать всё то что приходит с других направлений, при чем изменять направление приёма можно не меняя положения ФАР в пространстве. Что интересно эти две антенны, на снимках с верху, принимающие, то-есть они не могли ничего передавать (излучать) в пространство. Бытует ошибочно мнение что излучателем для "ДУГИ" был находящийся рядом комплекс "КРУГ", это не так. ВНЗ "КРУГ" (не путать с ЗРК КРУГ) был предназначен для других целей, хоть и работал в паре с "ДУГОЙ", о нём будет ниже. Излучатель дуги находился в 60 км от Чернобыля-2 возле города Любеч (Черниговская область). К сожалению не смог найти не одной достоверной фотографии сего объекта, есть только словесное описание: "Передающие антенны также построены по принципу фазированной антенной решётки и были меньше и ниже, их высота составляла 85 метров.". Если кто вдруг обладает фотографиями этого сооружения буду очень благодарен. Приёмная система ЗРЛС "ДУГА" потребляла около 10 МВт, сколько потреблял передатчик сказать не могу ибо цифры уж очень отличаются в разных источниках, на вскидку могу сказать что мощность одного импульса была не меньше 160 МВт. Хочу обратить внимание что излучатель был импульсный, как раз эти импульсы, которые слышали в своём эфире американцы, и дали название для станции "дятел". Использование импульсов необходимо для того чтобы при их помощи можно достичь больше излучаемой мощности чем постоянная потребляемая мощность излучателя. Это достигается путём накопления энергии в период между импульсами, и излучение этой энергии в виде кратковременного импульса. Обычно время между импульсами, не меньше чем в десять раз, превышает время самого импульса. Именно такое колоссальное потребление энергии объясняет постройку станции в относительно близости от АЭС - источника энергии. Вот как кстати звучал "русский дятел" в американском радиоэфире. Что касается возможностей "ДУГИ" то станции этого типа могли засекать только массированный старт ракет при котором образуется большое количество факелов ионизированного газа от двигателей ракет. Нашёл вот такую картинку с секторами обзора трех станций типа "ДУГА":

Эта картинка является правильно отчасти потому что показывает только направления обзора, а сами сектора обзора обозначенный не правильно. В зависимости от состояния ионосферы угол обзора был примерно равен 50-75 градусов, хотя на картинке он показан в градусов 30 максимум. Дальность обзора опять же зависела от состояния ионосферы и была не меньше 3 тыс км, а в лучшем случае можно было видеть пуски аж за экватором. Из чего можно было сделать вывод что станции просматривали всю территорию северной Америки, Арктики, и северные части атлантического и тихого океанов, одним словом почти все возможные районы пуска баллистических ракет.

ВНЗ "КРУГ"

Для корректной работы ЗРЛС и определения оптимальной трассы прохождения зондирующего луча необходимо иметь точные данные о состоянии ионосферы. Для получения этих данных была предназначена станция Возвратно Наклонного Зондирования (ВНЗ) ионосферы "КРУГ". Станция состояла из двух колец антенн похожих как на ФАР "ДУГИ" только расположенных вертикально, всего было 240 антенн высотой 12 метров каждая, и одна антенна стояла на одноэтажном здании в центре кругов.


ВНЗ "КРУГ"

В отличии от "ДУГИ" приёмник и передатчик находятся в одном месте. В задачу этого комплекса входило постоянно определять длины волн которые с наименьшим затуханием распространяются в атмосфере, дальность их распространения и углы под которыми волны отражаются от ионосферы. По этим параметрам высчитывалась трасса прохода луча до цели и обратно и приёмная ФАР настраивалась таких образом что бы принимать только свой отражённый сигнал. Простыми словами вычисляли угол прихода отражённого сигнала и создавали в этом направлении максимальную чувствительность ФАР.

СОВРЕМЕННЫЕ ЗРЛС "ДОН-2Н" "ДАРЬЯЛ", "ВОЛГА", "ВОРОНЕЖ"

Эти станции стоят до сих пор на боевом дежурстве (кроме дарьяла), достоверной информации по ним крайне мало, поэтому озвучу их возможности поверхностно. В отличии от "ДУГИ" эти станции могут фиксировать отдельные пуски ракет, и даже обнаруживать крылатые ракеты летящие на сверх малых. В целом конструкция не изменилась, это те же ФАР служащие для приёма и передачи сигналов. Поменялись используемые сигналы, они такие же импульсные, но теперь они размазаны равномерно по рабочей полосе частот, простыми словами это уже не стук дятла, а равномерный шум, который сложно выделить на фоне других шумов не зная изначальной структуры сигнала. Так же поменялись частоты, если дуга работала в КВ диапазоне то "Дарьял" способен работать в КВ, УКВ и УВЧ. Определят цели теперь могут не только по выхлопу газа но и по самой тушке цели, о принципах обнаружения целей на фоне земли я рассказывал уже в прошлой статье.

ДАЛЬНЯЯ СДВ РАДИОСВЯЗЬ

В прошлой статье я кратко рассказывал о километровых волнах. Может в будущем сделаю статью по этим видам связи, а сейчас кратко расскажу на примерах двух передатчиков "ЗЕВС" и 43-ем узле связи ВМФ России. Заголовок СДВ чисто символический, так как эти длины выпадают из обще принятых классификаций, а системы использующие их единичны. ЗЕВС использует волны длинной 3656 км и частотой 82 герца. Для излучения используют особую антенную систему. Находят участок земли с максимально низкой удельной проводимостью, в него на расстоянии 60 км забивают на глубину 2-3 км два электрода. Для излучения на электроды подаётся высоковольтное напряжение с заданной частотой (82 Гц), по скольку сопротивление земной породы крайне велико между электродами, электрическому току приходиться идти через более глубокие слои земли, тем самым превращая их в огромную антенну. Во время работы "Зевс" потребляет 30 МВт, но излучаемая мощность составляет не больше 5 Ватт. Однако этих 5 Ватт полностью хватает для того что бы сигнал прошёл полностью весь земной шар насквозь, работу "Зевса" регистрируют даже в Антарктиде, хотя сам он расположен на Кольском полуострове. Если придерживаться старых советских норм "Зевс" работает в КНЧ (крайне низкие частоты) диапазоне. Особенность этого типа связи в том что она односторонняя, поэтому её назначение передавать условные короткие сигналы, услышав которые, подлодки всплывают на небольшую глубину для связи с командным центром или выпускают радиобуй. Что интересно "Зевс" оставался секретным до 1990-х годов, пока ученые Стэнфордского университета (Калифорния) не опубликовали ряд интригующих заявлений, касающихся исследований в области радиотехники и радиопередачи. Американцы стали свидетелями необычного явления - научная радиоаппаратура, размещенная на всех континентах Земли регулярно, в одно и то же время, фиксирует странные повторяющиеся сигналы на частоте 82 Гц. Скорость передачи за один сеанс - три знака каждые 5-15 минут. Сигналы поступают прямо из земной коры - у исследователей возникает мистическое ощущение, будто бы сама планета разговаривает с ними. Мистика - удел средневековых мракобесов, а продвинутые янки сразу догадались, что имеют дело с невероятным КНЧ-передатчиком, размещенным где-то на другом конце Земли. Где? Ясно где - в России. Похоже, эти безумные русские «закоротили» целиком всю планету, используя её в качестве гигантской антенны для передачи зашифрованных сообщений.

43-й узел связи ВМФ России представляет несколько иной тип длинноволнового передатчика (радиостанция «Антей», RJH69). Станция расположена вблизи городка Вилейка, минская область, РБ, антенное поле занимает площадь 6,5 квадратных километра. Состоит из 15 мачт высотой 270 метров и трех мачт высотой в 305 метров, между мачт натянуты элементы антенного поля, общий вес которых составляет около 900 тон. Антенное поле расположено над заболоченными участками земли что обеспечивает хорошие условия для излучения сигнала. Я сам был рядом с этой станцией и могу сказать что просто словами и картинками не передать тех размеров и ощущений которые вызывает эта громадина в реальности.


Так выглядит антенное поле на гугл картах, хорошо видны просеки над которыми натянуты основные элементы.


Вид с одной из мачт "Антея"

Мощность "Антея" не менее 1 МВт, в отличии от передатчиков ЗРЛС он не является импульсным, то есть во время работы излучает этот самый мега Ватт или больше, всё время работы. Точная скорость передачи информации не известна но если проводить аналогию с немецким трофейным "Голиафом", не меньше 300 бит/с. В отличии от "Зевса" связь уже является двух сторонней, подлодки для связи используют либо много километровые проволочные буксируемые антенны, либо специальные радио буи которые выпускаются подлодкой с большой глубины. Для связи используется СДВ диапазон, дальность связи охватывает всё северное полушарие. Преимущества СДВ связи что её кране сложно заглушить помехами, а так же она может работать в условиях ядерного взрыва и после него в то время как более высоко частотные системы не могут наладить связь из-за помех в атмосфере после взрыва. По мимо связи с подлодками "Антей" используется для радио разведки и передачи сигналов точного времени системы "Бета".

ВМЕСТО ПОСЛЕСЛОВИЯ

Это не завершающая статья о принципах заглянуть за горизонт, будут ещё, в этой по просьбам читателей я сосредоточился на реальных системах вместо теории.. Так же прошу прощения за задержку с выходом, я не блогер или житель интернета, у меня есть работа которую я люблю и которая периодически очень "любит" меня, поэтому статьи пишу между делом. Надеюсь читать было интересно, потому что я всё ещё нахожусь в режиме пробы пера и не определился до сих пор в каком стиле писать. Конструктивная критика как всегда приветствуется. Ну и специально для филологов анекдот в конце:

Препод по матану про филологов:
— ...Да плюньте в лицо тому, кто говорит, что филологи - это нежные фиалочки с горящими глазами! Я вас умоляю! На самом деле они мрачные желчные типы, готовые язык собеседнику вырвать за фразы, типа "оплатите за воду", "мое день рождение", "дырка в пальте"...
Голос с задней парты:
— А что не так с этими фразами?
Препод, поправив очки:
— А на вашем трупе, молодой человек, они бы еще и попрыгали.

Советская радиолокационная станция для раннего обнаружения запусков межконтинентальных баллистических ракет. Задача этой станции - обнаруживать пуски ракет в США по изменениям состава ионосферы, вызываемого ракетными двигателями. В СССР было создано всего три таких радара - рядом с городами Николаевым, Комсомольском-на-Амуре и Чернобылем.

Решение о создании загоризонтной радиолокационной системы Дуга № 1 (возле г. Чернобыля) было принято на основании постановлений Правительства от 18 января 1972 и 14 апреля 1975 года. Уже в 1976 году был смонтирован главный радиолокационный узел ЗГРЛС Чернобыль-2. Генеральным проектировщиком ЗГРЛС был Научно-исследовательский институт дальней радиосвязи (НИИДАР), а главным конструктором и вдохновителем идеи ЗГРЛС - Франц Кузьминский. Возле радара, сооружённого недалеко от города Чернобыля, был создан гарнизон, где жили военные и их семьи.
В гарнизоне была расквартирована воинская часть космической связи № 74939, которой командовал полковник Владимир Мусиец.

Ныне этот объект сильно заражён и, разумеется, не эксплуатируется.

С помощью мощных излучателей военные смогли заглянуть за горизонт. Очевидно, что благодаря таким способностям этот комплекс получил название - загоризонтные радиолокационные станции (ЗГРЛС) или «Дуга-1» (Радиоцентр дальней связи «Чернобыль-2»). Уникальные способности радара кроются в новаторских идеях конструкторов воплотившихся в исполинских размерах конструкций мачт и принимающих антеннах. Трудно говорить о точных геометрических размерах ЗГЛРС. Данные общедоступных источников противоречивы и, вероятно, неточны. Так высота мачт большой антенны составляет от 135 до 150 м, а длина - от 300 до 500 м. Второй радар несколько скромнее. Порядка 250 м в длину и до 100 м в высоту. При таких поражающих воображение,размерах объект виден почти с любого места Чернобыльской зоны отчуждения.

По данным некоторых источников, стоимость капиталовложений составляла семь миллиардов советских рублей (есть информация о 600–700 млн рублей). Для сравнения - это вдвое дороже, чем строительство Чернобыльской АЭС. Очевидно, что строительство ЗГРЛС возле атомной электростанции объясняется в потребности большого энергопотребления. Важно отметить, ЗГРЛС в Чернобыле-2 предназначалась для приёма и обработки сигнала. По имеющейся информации ЗГРЛС потребляла около 10 МВт. Передатчик комплекса располагался возле города Любеча Черниговской области, на расстоянии 60 км от Чернобыльской станции. Антенна в Любече была меньше и ниже, её высота составляла 85 м. На данный момент передатчик уничтожен.

Конструкторы и разработчики ЗГРЛС - Е. Штырен, В. Шамшин, Франц Кузьминский, Э. Шустов
Дата и место строительства первой ЗГРЛС: 1975 год. Город Комсомольск-на-Амуре
Первое опытное включение ЗГРЛС «Чернобыль-2»: 1980 год.
Проектный институт: НИИДАР (Научно-исследовательский институт дальней радиосвязи

Трагизм ситуации с «Дугой-1» усугубляется тем, что станция была принята на боевое дежурство ПВО СССР в 1985 году, а в 1986 году система была полностью модернизирована и начала проходить Государственную приёмку. И тут взорвался 4-й блок ЧАЭС. До модернизации, использование ЗГРЛС было затруднительным, поскольку часть диапазона рабочих частот совпадала с частотой работы авиационных систем. Некоторые источники утверждают, что после начала работы чернобыльского радара ряд правительств западных стран заявили о недопустимости работы этой системы, которая препятствует безопасной работе гражданской авиации в Европе. Хотя разработчики ЗГРЛС отвергали обвинения и говорили, что возмущение правительств европейских стран заключается в том, что СССР накрыл «колпаком» все воздушное пространство над Европой и страны НАТО не могли ничего этому противопоставить. После модернизации эта проблема совпадения рабочих частот ЗГРЛС с частотами гражданской авиации была решена.

Полное закрытие инфраструктуры города Чернобыль-2 было проведено не сразу - до 1987 года она была законсервирована. Но со временем стало понятно, что эксплуатировать ее в условиях зоны отчуждения невозможно. Основные узлы системы ЗГРЛС были демонтированы и вывезены в г. Комсомольск.
За характерный звук в эфире, издаваемый при работе (стук) получила название Russian Woodpecker (Русский дятел).
Эта станция наделала много шума - когда при её запуске многие западные державы обнаружили её стук на частотах гражданской авиасвязи. Последовал официальный протест от США, Великобритании и других стран. После пришлось было сменить полосу частот для зондирования. Были даже курьёзы, когда радиолюбители многих стран пытались вести противодействие дятлу путём передачи записанного стука в противофазе. Само собой, толку от этого не было.

Попасть в город и подойти к ЗГРЛС сегодня достаточно трудно. Объект режимный и находится под постоянной охраной одного из предприятий в Чернобыльской зоне. Много можно говорить о царящей разрухе и опустошении построек Чернобыля-2, а также о глубине навеваемой тоски, которую испытываешь от созерцания этих мест. Можно много говорить о поглощении природой этого техногенного монстра, которое заключается в «затягивании» бетонных покрытий дорог и тротуаров наносным почвенным субстратом и разложившимися останками растительности. Некоторые кирпичные строения разрушаются из-за деревьев, выросших на крышах, кирпичных стенах строений.

Гигантских размеров антенна комплекса - высотой с небоскрёб (150 м) и шириной в семь футбольных полей (750 м) породила много легенд: например, что она способна воздействовать на психику людей на расстоянии в тысячи километров, или то, что радар являлся геофизическим (климатическим) оружием (эту версию реально рассматривал Конгресс США) и т.д.

ЗГ РЛС являются доплеровскими, т. е. ис­пользуют для выделения полезных сигналов из помех доплеровское смещение частоты сигналов, отраженных движущимися целя­ми. Станции, использующие принцип обратного рассеяния, вследствие значительных трудностей, связанных с обеспечением развязки между мощной передающей и высокочувствительной при­емной системами, в большинстве случаев строят с разнесением на некоторое расстояние передающей и приемной систем (от десятков до одной-двух сотен километров). Рассмотрим принцип по­строения основных составных частей ЗГ РЛС.

Антенно-фидерные устройства. Специфические условия работы ЗГ РЛС, определяют основные требования, предъявляемые к АФУ.

Антенна должна иметь большой коэффициент усиления (20...30 дБ) перекрывать широкий диапазон частот (коэф­фициент перекрытия по частоте РЛС в целом составляет 5..6, обеспечивать быстрое сканирование в широком азиму­тальном секторе. Кроме того, передающая антенна должна обеспечивать излучение сигналов с большой мощностью (средняя мощность -несколько сотен киловатт).

Указанные требования определяют построение АФУ в виде фазированных решеток.

Для излучения сигналов значительной мощности в декаметро­вом диапазоне в зарубежных ЗГ РЛС используется несколько пе­редающих устройств, работающих на элементарные излучатели, образующие передающую антенную решетку. Для обеспечения широкоугольного сканирования луча относительные фазы сигналов передатчиков должны изменяться во времени, для чего исполь­зуется специальная система фазирования, связанная с датчиками, устанавливаемыми на входах элементарных излучателей.

Широкоугольный обзор пространства в азимутальной плоскости в приемных АФУ достигается путем использования специальных диаграммоформирующих схем (ДФС), подключаемых к элемен­тарным излучателям приемной антенной решетки. При этом путем коммутации линий задержки различной длины, входящих в ДФС, можно обеспечивать сканирование луча, либо при введении в ДФС разветвленных схем фазирования формировать многолуче­вую (веерную) ДН. К выходам ДФС подключают приемные устройства.

К ДН, формируемым АФУ в угломестнойплоскости, предъяв­ляют требования максимального прижатия их к горизонту, что определяется условиями распространения сигналов декаметрового диапазона. При использовании антенн горизонтальной поляриза­ции требования прижатия к горизонту луча приводят к необходи­мости создания антенных сооружений значительной высоты. При использовании антенн с вертикальной поляризацией для прижатия луча к горизонту и уменьшения потерь в Земле осуществляют ме­таллизацию предполья антенны. Металлизация представляет со­бой сетчатый (проволочный) экран, уложенный на Земле,или, во избежание дополнительных потерь в снежном покрове, разме­щенный на расстоянии 1,5...2 м над поверхностью Земли.

Основным требованием к излучающим элементам, составляю­щим передающую антенную решетку, является постоянство вход­ного сопротивления излучателя в диапазоне рабочих частот и в заданном секторе сканирования. Обеспечение этого требования с учетом взаимных связей излучателей в решетке представляет со­бой сложную инженерную задачу. В качестве элементарного из­лучателя в антенных решетках декаметрового диапазона часто используются шунтовые широкодиапазонные вибраторы.

В ряде зарубежных РЛС применяются также логопериодические антенны. При этом широко используются различные мо­дификации логопериодических антенн: леерной и самонесущей кон­струкции, горизонтальной и вертикальной поляризации, с симмет­ричным и несимметричным входом.

Передающая система . Она состоит из двух основных частей: комплекса передающей аппаратуры и антенной системы.

Основными требованиями к комплексу передающей аппаратуры ЗГ РЛС, работающих в декаметровом диапазоне, в соответствии со сказанным выше являются: большая ширина перекрываемого диапазона рабочих частот; высокий уровень мощности зондирую­щего сигнала; максимальная чистота спектрального состава при заданных видах модуляции формируемого в передающей аппара­туре зондирующего сигнала.

Если требуется одновременный обзор зоны 1000...4000 км на всю ее глубину, то необходимо, чтобы рабочая частота РЛС могла выбираться приблизительно в пределах ±25% от номинала рабочей частоты.

Сочетание разброса величин МПЧ относительно медианных значений с требованием глубины контролируемой зоны по дально­сти приводит к необходимости иметь полный диапазон частот пе­рестройки станции с коэффициентом перекрытия по частоте, равным 2-3. Для РЛС с большой азимутальной шириной зоны кон­троля может потребоваться диапазон 4...32 МГц.

При распространении радиоволн в направлении объекта, под­лежащего обнаружению, и при обратном распространении сигнала, рассеиваемого объектом в направлении приемной антенны, зату­хание радиоволн достигает весьма больших значений. Чтобы обес­печить достаточный для обработки уровень сигнала на входе при­емной аппаратуры, уровень средней мощности излучаемого сигна­ла должен составлять от сотен киловатт до единиц мегаватт.

Требование излучения сигнала с такой высокой мощностью при­водит к построению передающего комплекса, состоящего из мно­гоканального усилителя и антенной системы в виде ФАР. При использовании такой схемы суммирование сигналов отдельных из­лучателей, соединенных с соответствующими каналами усилителя мощности, происходит в пространстве в дальней зоне относитель­но местоположения антенны. Благодаря этому эквивалентная мощ­ность зондирующего сигнала дополнительно увеличивается пропор­ционально коэффициенту усиления антенны. Необходимость управ­ления направленностью излучения для перекрытия заданного секто­ра обзора по азимуту привела к дополнительному требованию по созданию необходимого фазового распределения сигналов на из­лучателях в раскрыве антенного полотна и по обеспечению быст­родействующего управления фазовым распределением для пере­крытия заданного сектора обзора.

В качестве зондирующих сигналов используют непрерывные и импульсные сигналы, а также сигналы с ЧМ. или с различным ви­дом кодирования. Длительности импульсов ЗГ РЛС находятся в пределах от сотни микросекунд до единиц миллисекунд, частоты повторения - единицы и десятки герц. Для когерентной, обработки принимаемого сигнала и выделения доплеровских со­ставляющих спектра в этих РЛС формируются зондирующие сиг­налы, имеющие высокую точность и стабильность рабочей (несу­щей) частоты.

Передающий комплекс. Комплекс передающей аппаратуры должен состоять из элементов, обеспечивающих выполнение ука­занных выше функциональных задач. В передающем комплексе информация о параметрах модуляции сигнала, о выбранной рабо­чей частоте и о требуемом фазовом распределении сигналов в каналах усиления мощности, поступающая от приемной системы, преобразуется в аппаратуре управления и передается в виде команд на соответствующие исполнительные элементы комплекса. От приемной системы поступают также сигналы, обеспечивающие синхронизацию работы аппаратуры передающей и приемной си­стем. В исполнительных элементах комплекса производится фор­мирование сигнала с заданной структурой и передача в соответст­вующие каналы усилителя мощности. В аппаратуре каждого кана­ла усиления мощности производятся фазирование и усиление сиг­нала до необходимого уровня и передача его на вход фидерного тракта, соединяющего выход каждого канала с соответствующим излучателем антенного полотна.

В аппаратуре функционального контроля производятся оценка работоспособности элементов комплекса передающей аппаратуры и проверка соответствия параметров зондирующего сигнала задан­ным параметрам.

Система формирования зондирующего сигнала. В одной из воз­можных систем построения аппаратуры формирования сигнала все сигналы формируются из одного и того же основного опорного сиг­нала, получаемого от специального высокостабильного генератора. Требуемая структура зондирующего сигнала формируется на отно­сительно низком уровне мощности.

Канал усиления мощности. Функциональными задачами аппа­ратуры каждого канала усиления мощности являются: задание сигналу необходимой фазы в соответствии с требуемым фазовым распределением в раскрыве ФАР; усиление сигнала до необходи­мого уровня при минимальных искажениях амплитудной и фазо­вой структур.

Каждый канал усиления мощности может быть охвачен цепью обратной связи, обеспечивающей автоматическое регулирование амплитуды и фазы. Система автоматического регулирования пред­назначена для компенсации фазовых и амплитудных флуктуации и обеспечения необходимой чистоты спектрального состава зондиру­ющего сигнала.

Аппаратура управления и синхронизации. Эта аппаратура обе­спечивает связь комплекса передающей аппаратуры с остальной аппаратурой станции и формирует необходимые управляющие сиг­налы в соответствии с установленной программой работы и инфор­мацией, поступающей от вычислительного комплекса. Управляю­щие сигналы формируются с учетом данных о работоспособности элементов комплекса, поступающих в аппаратуру управления от аппаратуры функционального контроля.

Аппаратура формирует также сигналы управления техническим состоянием элементов комплекса.

Аппаратура функционального контроля. Эта аппаратура обес­печивает получение информации о работоспособности элементов комплекса передающей аппаратуры и об основных параметрах излучения.

Приемная система . В одном из возможных вариантов постро­ения приемной системы ЗГ РЛС в ее состав входят:

АФУ; приемные устройства трактов обнаружения, трактов опре­деления оптимального поддиапазона рабочих частот и приемные устройства тракта выбора рабочего канала;

вычислительный комплекс, состоящий из спецвычислителей и универсальных ЭВМ и обеспечивающий решение задач первичной обработки сигналов, обнаружения, определения оптимального под­диапазона и выбора рабочего канала на основе использования ин­формации, поступающей от приемных устройств соответствующих трактов;

аппаратура синхронизации, содержащая высокостабильный ге­нератор сигнала опорной частоты и узел формирования сетки ча­стот, необходимой для синхронизации и управления работой всей аппаратуры приемной позиции;

аппаратура управления работой РЛС и индикации, обеспечи­вающая отображениенеобходимой информации об обнаружива­емыхобъектах и о техническом состоянии всей аппаратуры станции;

аппаратура межпозиционной связи для обмена сигналами син­хронизации и управления, а также информацией о техническом со­стоянии аппаратуры.

В последние годы благодаря значительным достижениям элек­тронной техники стало возможным практическое внедрение техни­ки цифровой обработки сигналов, обладающей рядом важных преимуществ по сравнению с аналоговой. Это позволяет достаточ­но широко вводить адаптивные системы обработки информации, что улучшает основные характеристики РЛС.

Тракт обнаружения . Этот тракт является основным в РЛС и обеспечивает обнаружение объекта, глубоко скрытого за линией горизонта. Структура тракта, алгоритмы обработки и аппаратур­ное построение определяются назначением и характеристиками станции. Однако в любом варианте можно выделить некоторые основные особенности, присущие трактам обнаружения ЗГ РЛС:

работа тракта обнаружения одновременно на нескольких ра­бочих частотах, что обеспечивает уменьшение потерь информации, связанных с довольно резкой в декаметровом диапазоне зависи­мостью затухания электромагнитной энергии в процессе распро­странения от частоты;

одновременный или квазиодновременный обзор зоны ответст­венности несколькими парциальными ДН, что приводит к многоканальности построения тракта обнаружения;

введение в каждый из каналов тракта обнаружения для подав­ления пассивных помех специальной аппаратуры пространственной и спектрально-временной компенсации.

Загоризонтные РЛС работают, как правило, со сложными зон­дирующими сигналами с линейно-частотной (ЛЧМ) или фазоквой модуляцией. Частота повторения при импульсном режиме работы определяется границей зоны ответственности по дальности. Ширина спектра зондирующего сигнала ограничена возможностями декаметрового диапазона, а также необходи­мостью снижения мешающего действия радиосредствам, работа­ющим в соседних каналах, и имеет величину от сотен герц до де­сятков килогерц. В соответствии с такой шириной спектра разре­шающая способность по дальности имеет величину не лучше не­скольких километров.

В ЗГ РЛС обнаружение полезных сигналов ведется на фоне ин­тенсивных резко нестационарных активных и пассивных помех. Для решения задачи обнаружения в таких условиях целесообраз­но применять адаптацию характеристик тракта к помеховой об­становке. В частности, необходимы пространственная адаптация, позволяющая минимизировать влияние радиосигналов, приходя­щих не с главного направления и принимаемых по боковым ле­песткам ДН АФУ, и частотная адаптация, позволяющая путем отслеживания изменения спектральных характеристик пассивной помехи (доплеровского смещения спектральных линии и величины их уширения в процессе распространения) обеспечивать макси­мально возможное ее подавление.

Обычно теоретически оптимальные структуры оказываются чрезвычайно сложными и не могут быть реализованы из-за боль­шого объема требуемой вычислительной аппаратуры. На практике, как правило, применяются квазиоптимальные схемы, в которых обработка разбивается на ряд последовательно выполняемых эта­пов. Это позволяет значительно упростить ее. Однако в результа­те упрощения неизбежно возникают потери в эффективности об­работки и соответственно в возможностях обнаружения целей. По­этому вопрос о разбиении обработки на этапы требует соблюде­ния необходимых предосторожностей и нахождения разумных ком­промиссов. Правильное решение вопроса зависит от условий рабо­ты станции и может быть различным для различных конкретных случаев.

Устройство пространственной обработки. Адаптивное формиро­вание ДН приемной антенны в условиях наличия пространственно сосредоточенных источников помех является одним из важнейших средств увеличения отношения сигнал-помеха в тракте обнаружения. Суть пространственной обработки состоит в весовом сумми­ровании сигналов, синхронно снимаемых, с приемных каналов раз­личных элементов антенной системы. При этом сигнал y i на вы­ходе устройства пространственной обработки, соответствующий приему с j-го азимутального направления, определяется скаляр­нымпроизведением векторов X иW j:

где п - номерприемного канала; X - вектор-столбец выборок, снимаемых с выходов приемных каналов в текущий момент време­ни; W - вектор-столбец межканальных весов; T-индекстранспо­нирования.

Вектор весовых коэффициентов Wj opt , максимизирующих отно­шение сигнал-помеха для сигналов, приходящих с j-го азимуталь­ного направления приема, в случае использования винеровского фильтра определяется соотношением

где r - межканальная ковариационная матрица выборок помехи, снимаемых с выходов приемных каналов в произвольный момент времени; - вектор, комплексно сопряженный с вектором коэф­фициентов усиления ДН приемных каналов в j-м азимутальном направлении приема.

Отметим, что при формировании адаптивной антенной решетки с числом элементов N операция обращения ковариационной ма­трицы R требует примерно N 3 арифметических действий. Поэтому для работы вреальном масштабе времени при больших N требуютсявычислительные средства высокой производительности.

Эффективным способом упрощения обработки является пред­варительное разбиение антенны на субрешетки, объединяющие не­которое число L элементов решетки, с неадаптивным формирова­нием ДН на каждой из них. Для формирования адаптив­нойДН в этом случае в качестве элементов антенны используют­ся субрешетки, что приводит к сокращению числа каналов адап­тациии соответственно размерности матрицы R b L раз.

Устройство спектрально-временной обработки. Сигнал, посту­пающий на вход устройства спектрально-временной обработки, представляет собой аддитивную смесь полезного сигнала, пассив­ной помехи и активной помехи. Характеристики полезного сигнала определяются типом лоцируемого объекта.

При обнаружении сигнала с неизвестными параметрами долж­на производиться многоканальная обработка по частоте и време­ни путем реализации алгоритма для каждого элемента разреше­ния в заданной области.

В случае обнаружения объектов (например, самолетов), у кото­рых отраженный сигнал имеет узкий (существенно уже частоты повторения) спектр флуктуации, практическая реализация устрой­ства обработки значительно упрощается. Вследствие узкополосности сигнала его спектр сосредоточен (при построении узла межпериодной обработки в виде анализатора спектра) в пределах одно­го канала обнаружения. Однако ввиду неизвестности доплеровской частоты полезного сигнала должно быть реализовано несколько каналов, перекрывающих интервал частот от нуля до частоты, рав­ной частоте повторения.

При узкополосном спектре флуктуации полезного сигнала име­ет место проблема так называемых «слепых скоростей», проявля­ющихся при кратности доплеровской частоты сигнала частоте по­вторения. Известны традиционные методы решения этой проблемы, например, путем вобуляции частоты повторения РЛС.

Тракт определения оптимального поддиапазона рабочих частот. Для эффективной работы ЗГ РЛС важно иметь полученные в ре­альном масштабе времени характеристики трассы распростране­ния, а также данные о занятости частотного диапазона. Важно также, чтобы параметры внешней среды оптимальным образом со­гласовались с параметрами РЛС.

Одно из возможных решений задачи согласования параметров РЛС (таких, как рабочая частота) с характеристиками трассы распространения (амплитудно-частотными и дальностно-частотными) заключается во введении в состав РЛС специального тракта определения оптимального поддиапазона рабочих частот. На­значение этого тракта должно заключаться в выборе поддиапазона частот, в котором затухание на трассе распространения минималь­но, с целью оптимизации работы тракта обнаружения полезного сигнала.

Основная информация, которая используется в рассматривае­мом тракте, основывается на зависимостях амплитуд сигналов и величины их задержек от рабочей частоты. Эти зависимо­сти определяются амплитудно-частотными и дальностно-частотными характеристиками. Для получения указанных характеристик в тракте оптимальных рабочих частот должно осуществляться непре­рывное частотное сканирование в широком диапазоне частот. Конструктивно данный тракт может представлять собой самосто­ятельную РЛС, входящую в состав основной РЛС, со своим воз­будителем и отдельными приемными устройствами. Усилители мощности передающего комплекса и передающая и приемные ан­тенны могут быть совмещены с соответствующими устройствами тракта обнаружения. Излучение для рассматриваемого тракта должно осуществляться на частотах, отличных от частот тракта обнаружения, в паузах между посылками импульсов, излучаемых по основному тракту.

Задача оптимизации частоты решается путем анализа ампли­тудно-частотных и далыюстно-частотных характеристик сигналов.

Тракт выбора рабочего канала. Наряду с выбором оптималь­ного поддиапазона рабочих частот необходим контроль за всем этим поддиапазоном для установления его загрузки работой раз­личных радиотехнических средств. Конт­роль занятости выбранного поддиапазона может помочь при выбо­ре точного значения рабочей частоты РЛС и ширины полосы излу­чения, имея в виду выбор канала и режима работы с минималь­ным уровнем помех и с наименьшим воздействием на работу дру­гих радиотехнических средств. Задача тракта выбора рабочего ка­нала заключается в определении конкретных номиналов рабочих частот для тракта обнаружения в пределах области оптимальных рабочих частот. Рабочие каналы выбираются из условий мини­мального уровня помех с учетом полосы частот тракта обнаруже­ния. Аппаратура тракта выбора рабочего канала представляет собой приемное устройство, которое анализирует уровень помех в зависимости от частоты.

Вычислительный комплекс. Этот комплекс должен обладать высокой производительностью и большим объемом оперативной и командной памяти, поскольку в нем осуществляется вторичная об­работка информации, поступающей со всех основных трактов стан­ции, а также решаются задачи контроля их работы, управления и документирования.


Похожая информация.