Алюминиевые сплавы. Марки алюминия: расшифровка Листы из алюминиевого сплава марки АМг2

Предлагаем неплакированный лист алюминиевый АМг2 с гладкой и рифленой поверхностью. Листовой прокат изготовляют согласно ГОСТ 21631-76. Химический состав алюминиевого сплава марки АМг2 по ГОСТ 4784-74. Виды рифления: алмаз и квинтет. Широкий размерный ряд. Продажа со склада в Москве или под заказ в минимально возможные сроки.

Сервис

Поставки деформируемого сплава алюминия марки АМг2 осуществляются в листах и рулонах. Выгодные цены на отечественный и зарубежный прокат высокого качества. Индивидуальный подход к каждому покупателю. Профессиональные услуги по шлифовке, анодированию, гибке и резке листового алюминия в размер. Временная противокоррозионная защита, упаковка, транспортирование и хранение по ГОСТ 9.510-93.

Характеристики

Алюминиевый лист АМг2 обладает хорошей коррозионной стойкостью, пластичностью и свариваемостью. Цифра 2 в маркировке деформируемого сплава обозначает процентное содержание магния.

По состоянию материала:

  • лист алюминиевый АМг2М отожженный;
  • лист алюминиевый АМг2Н нагартованный.

Термическая обработка изменяет структуру материала, его физические и механические свойства. В результате отжига листы АМг2М становятся более пластичными и ковкими. Значительно улучшается обрабатываемость изделия резанием. Для частичного восстановления твердости металла используется дрессировка – прокатка с обжатием 2-5%. Методом холодной обработки давлением получают листы АМг2Н повышенной прочности. При этом снижается пластичность и ударная вязкость материала. Алюминиевый лист АМг2Н2 изготавливается из нагартованного на одну вторую сплава. В нем совмещаются хорошие прочностные и механические свойства. Алюминиевые листы АМг2НР производятся из нагартованного и рафинированного сплава. Минимальное содержание примесей позволяет улучшить электропроводность полуфабрикатов.

По способу производства:

  • листовой алюминий неплакированный.

Матовая поверхность с обычным качеством отделки. Нормальная точность изготовления по толщине, ширине и длине.

Сфера применения

Листы АМг2М и АМг2Н используются для изготовления строительных конструкций, транспортных деталей. Из них изготавливают гидравлическое оборудование, промышленные трубопроводы, обшивку грузовых автомобилей, химические сосуды, работающие под давлением.

Алюминий нашел широкое применение в промышленности благодаря высоким показателям теплопроводности, устойчивости к образованию коррозии, пластичности, малой плотности и электрического сопротивления. А если необходимо купить цветной металлопрокат , следует знать, что цена этого материала будет наиболее низкой сравнительно с другими.

Разновидности алюминия и его сплавов

В большинстве случаев алюминий применяется в виде сплавов - 20 % литейных и 80 % деформируемых. По марке можно определить метод его получения, а также основные его свойства.

Данный металл можно подразделить на несколько основных категорий:

  • первичный (А999, А95, А7Е А6 и т.д.);
  • технический (АД000, АД1, АДС);
  • для раскисления (АВ97Ф, АВ86, АВ91);
  • литейный (АМг11, ВАЛ10М, АК12пч);
  • деформируемый (Д1, 1105, АМг2, СвАМг6);
  • антифрикционный (АМК, АСМ, АО9-2Б);
  • лигатуры (AlBi3, AlZr5(B), AlNi10 и другие).

Как расшифровывается маркировка?

Деформируемые сплавы обозначаются соответственно - АД. Если после аббревиатуры идет 1, это означает, что использовался более чистый алюминий. Буква А в сочетании с Мц и Мг - сплав с марганцем или с магнием. Цифра после маркировки свидетельствует о процентном содержании того либо иного химического элемента. АК - алюминий для ковки, а цифра на окончании - номер сплава.

В полуфабрикатах после основной аббревиатуры следуют буквы (например, АМцАМ), которые расшифровываются следующим образом:

  • А - высококачественный сплав, из чистых сортов алюминия;
  • Б - прокат с технологической плакировкой или вовсе без нее;
  • УП - с утолщенной плакировкой;
  • М - мягкий;
  • Н - нагартованный;
  • П - полунагартованный;
  • Н1 - усиленно нагартованный;
  • В - высококачественная выкатка состаренных и предварительно закаленных листов;
  • О - высокое качество выкатки отожженного листового проката;
  • ГК - горячекатаный прокат;
  • ТПП - закаленный, состаренный прокат повышенной прочности.

Аббревиатура АЛ означает, что это литейный алюминий. В зависимости от режимов термообработки, обозначается Т, после нее в марках могут фигурировать цифры:

  • 8 - закаленный и прошедший смягчающий отпуск;
  • 7 - закалка со стабилизирующим отпуском;
  • 6 - закалка и старение до наивысшей твердости;
  • 5 - закаливание и частичное старение;
  • 4 - закаленный;
  • 2 - прошедший отжиг;
  • 1 - состаренный.

«Д» в основной маркировке - дюралюминий. Обозначение вида В или ВД (алькледы) - указывает, что дюралюминий покрыт слоем чистого алюминия с целью увеличения стойкости к коррозии. Высокопрочные сплавы с магнием и цинком маркируются «В» и цифрой (к примеру, 96 или 94), 2-я цифра из которых обозначает номер сплава.

АЛЮМИНИЕВЫЕ СПЛАВЫ

Классификация сплавов

Физические свойства

Коррозионные свойства

Механические свойства

Круглый и профильный алюминиевый прокат

Плоский алюминиевый прокат

Классификация алюминиевых сплавов.

Алюминиевые сплавы условно делятся на литейные (для производства отливок) и деформируемые (для производства проката и поковок). Далее будут рассматриваться только деформируемые сплавы и прокат на их основе. Под алюминиевым прокатом подразумевают прокат из алюминиевых сплавов и технического алюминия (А8 – А5, АД0, АД1). Химический состав деформируемых сплавов общего применения приведен в ГОСТ 4784-97 и ГОСТ 1131.

Деформируемые сплавы разделяют по способу упрочнения: упрочняемые давлением (деформацией) и термоупрочняемые.

Другая классификация основана на ключевых свойствах: сплавы низкой, средней или высокой прочности, повышенной пластичности, жаропрочные, ковочные и т.д.

В таблице систематизированы наиболее распространенные деформируемые сплавы с краткой характеристикой основных свойств присущих для каждой системы. Маркировка дана по ГОСТ 4784-97 и международной классификации ИСО 209-1.

Характеристика сплавов Маркировка Система легирования Примечания

СПЛАВЫ УПРОЧНЯЕМЫЕ ДАВЛЕНИЕМ (ТЕРМОНЕУПРОЧНЯЕМЫЕ )

Сплавы низкой прочности

и высокой пластичности,
АД0

1050А

Техн. алюминий без легирования

Также АД, А5, А6, А7

АД1

1230

АМц

3003

Al – Mn

Также

ММ (3005)

Д12

3004

Сплавы средней прочности

и высокой пластичности,

свариваемые, коррозионносойкие

АМг2

5251

Al – Mg

(Магналии)

Также АМг0.5 , АМг1, АМг1.5 АМг2.5

АМг4 и т.д.

АМг3

5754

АМг5

5056

АМг6

ТЕРМОУПРОЧНЯЕМЫЕ СПЛАВЫ

Сплавы средней прочности и высокой пластичности

свариваемые

АД31

6063

Al-Mg-Si

(Авиали)

Также

АВ (6151)

АД33

6061

АД35

6082

Сплавы нормальной прочности Д1

2017

Al-Cu-Mg

(Дюрали)

Также В65,

Д19, ВАД1

Д16

2024

Д18

2117

Свариваемые сплавы нормальной прочности 1915

7005

Al-Zn-Mg

1925

Высокопрочные сплавы

В95

Al-Zn-Mg-Cu

Также В93

Жаропрочные сплавы

АК4-1 Al-Cu-Mg-Ni-Fe

Также АК4

1201

2219

Al-Cu-Mn

Также Д20

Ковочные сплавы АК6

Al-Cu-Mg-Si

АК8

2014

Состояния поставки Сплавы, упрочняемые давлением , упрочняются только холодной деформацией (холодная прокатка или волочение). Деформационное упрочнение приводит к увеличению прочности и твердости, но уменьшает пластичность. Восстановление пластичности достигается рекристаллизационным отжигом. Прокат из этой группы сплавов имеет следующие состояния поставки, указываемые в маркировке полуфабриката:

без термообработки

2) М - отожженное

3) Н4 - четвертьнагартованное

4) Н2 - полунагартованное

5) Н3 - нагартованное на 3/4

6) Н - нагартованное

Полуфабрикаты из термоупрочняемых сплавов упрочняются путем специальной термообработки. Она заключается в закалке с определенной температуры и последующей выдержкой в течение некоторого времени при другой температуре (старение). Происходящее при этом изменение структуры сплава, увеличивает прочность, твердость без потери пластичности. Существует несколько вариантов термообработки. Наиболее распространены следующие состояния поставки термоупрочняемых сплавов, отражаемые в маркировке проката:

1) не имеет обозначения - после прессования или горячей прокатки без термообработки

2) М - отожженное

3) Т - закаленное и естественно состаренное (на максимальную прочность)

4) Т1 - закаленное и искусственно состаренное (на максимальную прочность)

Для некоторых сплавов производится термомеханическое упрочнение, когда нагартовка осуществляется после закалки. В этом случае в маркировке присутствует ТН или Т1Н. Другим режимам старения соответствуют состояния Т2, Т3, Т5. Обычно им соответствует меньшая прочность, но большая коррозионная стойкость или вязкость разрушения.

Приведенная маркировка состояний соответствует российским ГОСТам.

Физические свойства алюминиевых сплавов.

Плотность алюминиевых сплавов незначительно отличается от плотности чистого алюминия (2.7 г/см 3 ). Она изменяется от 2.65 г/см 3 для сплава АМг6 до 2.85 г/см 3 для сплава В95.

Легирование практически не влияет на величину модуля упругости и модуля сдвига. Например, модуль упругости упрочненного дуралюминия Д16Т практически равен модулю упругости чистого алюминия А5 (Е =7100 кгс/мм 2). Однако, за счет того, что предел текучести сплавов в несколько раз превышает предел текучести чистого алюминия, алюминиевые сплавы уже могут использоваться в качестве конструкционного материала с разным уровнем нагрузок (в зависимости от марки сплава и его состояния).

За счет малой плотности удельные значения предела прочности, предела текучести и модуля упругости (соответствующие величины, поделенные на величину плотности) для прочных алюминиевых сплавов сопоставимы с соответствующими значениями удельных величин для стали и титановых сплавов. Это позволяет высокопрочным алюминиевым сплавам конкурировать со сталью и титаном, но только до температур не превышающих 200 С.

Большинство алюминиевых сплавов имеют худшую электро- и теплопроводность, коррозионную стойкость и свариваемость по сравнению с чистым алюминием.

Ниже в таблице приведены значения твердости, тепло- и электропроводности для нескольких сплавов в различных состояниях. Поскольку значения твердости коррелируют с величинами предела текучести и предела прочности, то эта таблица дает представление о порядке и этих величин.

Из таблицы видно, что сплавы с большей степенью легирования имеют заметно меньшую электро- и теплопроводность, эти величины также существенно зависят от состояния сплава (М, Н2, Т или Т1):


марка

твердость,

НВ

электропроводность в

% по отношению к меди

теплопроводность

в кал/ о С

М Н2
Н,Т(Т1)
М Н2 Н, Т(Т1)
М Н2 Н, Т(Т1)
А8 - АД0
25
35 60 0.52
АМц
30 40 55 50 40 0.45 0.38
АМг2
45 60 35 30
0.34 0.30
АМг5
70 30 0.28
АД31
80 55 55 0.45
Д16
45 105 45 30 0.42 0.28
В95 150 30 0.28

Из таблицы видно, что только сплав АД31 сочетает высокую прочность и высокую электропроводность. Поэтому «мягкие» электротехнические шины производятся из АД0, а «твердые» - из АД31 (ГОСТ 15176-89). Электропроводность этих шин составляет (в мкОм*м):

0,029 – из АД0 (без термообработки, сразу после прессования)

0,031 – из АД31 (без термообработки, сразу после прессования)

0.035 – из АД31Т (после закалки и естественного старения)

Теплопроводность многих сплавов (АМг5, Д16Т, В95Т1) вдвое ниже, чем у чистого алюминия, но все равно она выше, чем у сталей.

Коррозионные свойства.

Наилучшие коррозионные свойства имеют сплавы АМц, АМг, АД31, а худшие – высоко-прочные сплавы Д16, В95, АК. Кроме того коррозионные свойства термоупрочняемых сплавов существенно зависят от режима закалки и старения. Например сплав Д16 обычно применяется в естественно-состаренном состоянии (Т). Однако свыше 80 о С его коррозионные свойства значительно ухудшаются и для использования при больших температурах часто применяют искусственное старение, хотя ему соответствует меньшая прочность и пластичность (чем после естественного старения). Многие прочные термоупрочняемые сплавы подвержены коррозии под напряжением и расслаивающей коррозии.

Свариваемость.

Хорошо свариваются всеми видами сварки сплавы АМц и АМг. При сварке нагартованного проката в зоне сварочного шва происходит отжиг, поэтому прочность шва соответствует прочности основного материала в отожженном состоянии.

Из термоупрочняемых сплавов хорошо свариваются авиали, сплав 1915. Сплав 1915 относится к самозакаливающимся, поэтому сварной шов со временем приобретает прочность основного материала. Большинство других сплавов свариваются только точечной сваркой.

Механические свойства .

Прочность сплавов АМц и АМг возрастает (а пластичность уменьшается) с увеличением степени легирования. Высокая коррозионная стойкость и свариваемость определяет их применение в конструкциях малой нагруженности. Сплавы АМг5 и АМг6 могут использоваться в средненагруженных конструкциях. Эти сплавы упрочняются только холодной деформацией, поэтому свойства изделий из этих сплавов определяются состоянием полуфабриката, из которого они были изготовлены.

Термоупрочняемые сплавы позволяют производить упрочнение деталей после их изготовления если исходный полуфабрикат не подвергался термоупрочняющей обработке.

Наибольшую прочность после упрочняющей термообработки (закалка и старение) имеют сплавы Д16, В95, АК6, АК8, АК4-1 (из доступных в свободной продаже).

Самым распространенным сплавом является Д16. При комнатной температуре он уступает многим сплавам по статической прочности, но имеет наилучшие показатели конструкционной прочности (трещиностойкость). Обычно применяется в естественно состаренном состоянии (Т). Но свыше 80 С начинает ухудшаться его коррозионная стойкость. Для использования сплава при температурах 120-250 С изделия из него подвергают искусственному старению. Оно обеспечивает лучшую коррозионную стойкость и больший предел текучести по сравнению с естественно-состаренным состоянием.

С ростом температуры прочностные свойства сплавов меняются в разной степени, что определяет их разную применимость в зависимости от температурного диапазона.

Из этих сплавов до 120 С наибольшие пределы прочности и текучести имеет В95Т1. Выше этой температуры он уже уступает сплаву Д16Т. Однако, следует учитывать, что В95Т1 имеет значительно худшую конструкционную прочность, т.е. малую трещиностойкость, по сравнению с Д16. Кроме того В95 в состоянии Т1 подвержен коррозии под напряжением. Это ограничивает его применение в изделиях, работающих на растяжение. Улучшение коррозионных свойств и существенное улучшение трещиностойкости достигается в изделиях обработанных по режимам Т2 или Т3.

При температурах 150-250 С большую прочность имеют Д19, АК6, АК8. При больших температурах (250-300 С) целесообразно применение других сплавов - АК4-1, Д20, 1201. Сплавы Д20 и 1201 имеют самый широкий температурный диапазон применения (от криогенных -250 С до +300 С) в условиях высоких нагрузок.

Сплавы АК6 и АК8 пластичны при высоких температурах, что позволяет использовать их для изготовления поковок и штамповок. Сплав АК8 характеризуется большей анизотропией механических свойств, у него меньше трещиностойкость, но он сваривается лучше, чем АК6.

Перечисленные высокопрочные сплавыт плохо свариваются и имеют низкую коррозионную стойкость. К свариваемым термоупрочняемым сплавам с нормальной прочностью относится сплав 1915. Это самозакаливающийся сплав (допускает закалку со скоростью естественного охлаждения), что позволяет обеспечить высокую прочность сварного шва. Сплав 1925, не отличаясь от него по механическим свойствам, сваривается хуже. Сплавы 1915 и 1925 имеют большую прочность, чем АМг6 и не уступают ему по характеристикам сварного шва.

Хорошо свариваются, имеют высокую коррозионную стойкость сплавы средней прочности - авиали (АВ, АД35, АД31,АД33).

АЛЮМИНИЕВЫЙ ПРОКАТ.

Из алюминия и его сплавов производятся все виды проката – фольга, листы, ленты, плиты, прутки, трубы, проволока. Следует иметь в виду, что для многих термоупрочняемых сплавов имеет место "пресс-эффект" - механические свойства прессованных изделий выше, чем у горячекатаных (т.е. круги имеют лучшие показатели прочности, чем листы).

Прутки, профили, трубы

Прутки из термоупрочняемых сплавов поставляются в состоянии "без термообработки" или в упрочненном состоянии (закалка с последующим естественным или искусственным старением). Прутки из термически неупрочняемых сплавов производятся прессованием и поставляются в состоянии "без термообработки".

Общее представление о механических свойствах алюминиевых сплавов дает гистограмма, на которой представлены гарантированные показатели для прессованных прутков при нормальных температурах:

Из всего приведенного многообразия в свободной продаже всегда имеются прутки из Д16, причем круги диаметром до 100 мм включительно обычно поставляются в естественно состаренном состоянии (Д16Т). Фактические значения (по сертификатам качества) для них составляют: предел текучести ? 0.2 = (37-45), предел прочности при разрыве ? в = (52-56), относительное удлинение ? =(11-17%). Обрабатываемость прутков из Д16Т очень хорошая, у прутков Д16 (без термообработки) обрабатываемость заметно хуже. Их твердость соответственно 105 НВ и 50 НВ. Как уже отмечалось, деталь, изготовленная из Д16 может быть упрочнена закалкой и естественным старением. Максимальная прочность после закалки достигается на 4-е сутки.

Поскольку дуралюминиевый сплав Д16 не отличается хорошими коррозионными свойствами, желательна дополнительная защита изделий из него анодированием или нанесением лако-красочных покрытий. При эксплуатации при температурах выше 80-100 С проявляется склонность к межкристаллитной коррозии.

Необходимость дополнительной защиты от коррозии относится и к другим высокопрочным сплавам (Д1, В95, АК).

Прутки из АМц и АМг обладают высокой коррозионной стойкостью, допускают возможность дополнительного формообразования горячей ковкой (в интервале 510-380 о С).

Разнообразные профили широко представлены из сплава АД31 с различными вариантами термообработки. Применяются для конструкций невысокой и средней прочности, а также для изделий декоративного назначения.

Прутки, трубы и профили из АД31 имеют высокую общую коррозионную стойкость, не склонны к коррозии под напряжением. Сплав хорошо сваривается точечной, роликовой и аргонно-дуговой сваркой. Коррозионная стойкость сварного шва такая же, как у основного материала. Для повышения прочности сварного шва необходима специальная термообработка.

Уголки производятся в основном из АД31, Д16 и АМг2.

Трубы производятся из большинства сплавов, представленных на рисунке. Они поставляются в состояниях без термообработки (прессованные), закаленные и состаренные, а также отожженные и нагартованные. Параметры их механических свойств примерно соответствуют, приведенным на гистограмме. При выборе материала труб кроме прочностных характеристик учитывается его коррозионная стойкость и свариваемость. Наиболее доступны трубы из АД31.

Наличие кругов, труб и уголков - см. на странице сайта "Алюминиевые круги, трубы и уголки"

Плоский алюминиевый прокат.

Листы общего назаначения производятся по ГОСТ 21631-76 , ленты - по ГОСТ 13726-97 , плиты по ГОСТ 17232-99 .

Листы из сплавов с пониженной или низкой коррозионной устойчивостью (АМг6, 1105, Д1, Д16, ВД1, В95) плакируются. Химический состав плакирующего сплава обычно соответствует марке АД1, а толщина слоя составляет 2 – 4% от номинальной толщины листа.

Плакирующий слой обеспечивает электрохимическую защиту основного металла от коррозии. Это означает, что коррозионная защита металла обеспечивается даже при наличии механических повреждений защитного слоя (царапины).

Маркировка листов включает в себя: обозначение марки сплава + состояние поставки + вид плакировки (если она присутствует). Примеры маркировки:

А5 - лист марки А5 без плакировки и термообработки

А5Н2 - лист марки А5 без плакировки, полунагартованный

АМг5М - лист марки Амг5 без плакировки, отожженный

Д16АТ - лист марки Д16 с нормальной плакировкой, закаленный и естественно состаренный.

На гистограмме приведены основные характеристики механических свойств листов в различных состояниях поставки для наиболее используемых марок. Состояние "без термообработки" не показано. В большинстве случаев величины предела текучести и предела прочности такого проката близки к соответствующим значениям для отожженного состояния, а пластичность ниже. Плиты выпускаются в состоянии "без термообработки".

Из рисунка видно, что выпускаемый ассортимент листов дает широкие возможности для выбора материала по прочности, пределу текучести и пластичности с учетом коррозионной стойкости и свариваемости.Для ответственных конструкций из прочных сплавов обязательно учитывается трещиностойкость и характеристики сопротивления усталости.

Листы из технического алюминия (АД0, АД1, А5-А7).

Нагартованные и полунагартованные листы используются для изготовления ненагружен-ных конструкций, резервуаров (в т. ч. для криогенных температур), требующих обеспечения высокой коррозионной стойкости и допускающих применение сварки. Они используются также для изготовления вентиляционных коробов, теплоотражающих экранов (отражательная способность алюминиевых листов достигает 80%), изоляции теплотрасс.

Листы в мягком состоянии используются для уплотнения неразъемных соединений. Высокая пластичность отожженных листов позволяет производить изделия глубокой вытяжкой.

Технический алюминий отличается высокой коррозионной устойчивостью во многих средах (см. страницу "Свойства алюминия" ). Однако, за счет разного содержания примесей в перечисленных марках, их антикоррозионные свойства в некоторых средах всё-таки различаются.

Алюминий сваривается всеми методами. Технический алюминий и его сварные соединения обладают высокой коррозионной стойкостью к межкристаллитной, расслаивающей коррозии и не склонны к коррозионному растрескиванию.

Кроме листов, изготавливаемых по ГОСТ21631-76 , в свободной продаже имеются листы, произведенные по Евростандарту, с маркировкой 1050А. По химическому составу они соответствуют марке АД0. Фактические параметры (по сертификатам качества) механических свойств составляют (для листов 1050АН24): предел текучести? 0.2 = (10.5-14), предел прочности при разрыве ? в =(11.5-14.5), относительное удлинение ? =(5-10%), что соответствует полунагартованному состоянию (ближе к нагартованному). Листы с маркировкой 1050АН0 или 1050АН111 соответствуют отожженному состоянию.

Листы (и ленты) из сплава 1105.

Из-за пониженной коррозионной стойкости изготавливается плакированным. Широко применяется для изоляции теплотрасс, для изготовления малонагруженных деталей, не требующих высоких коррозионных свойств.

Листы из сплава АМц .

Листы из сплава АМц хорошо деформируются в холодном и горячем состояниях. Из-за невысокой прочности (низкого предела текучести) используются для изготовления только малонагруженных конструкций. Высокая пластичность отожженных листов позволяет производить из них малонагруженные изделия глубокой вытяжкой.

По коррозионной стойкости АМц практически не уступает техническому алюминию. Хорошо свариваются аргонно-дуговой, газовой и контактной сваркой. Коррозионная стойкость сварного шва такая же, как у основного металла.

Листы из сплавов АМг.

Чем больше содержание магния в сплавах этой группы, тем они прочнее, но менее пластичны.

Механические свойства .

Наиболее распостранены листы из сплавов АМг2 (состояния М, Н2, Н) и АМг3 (состояния М и Н2), в том числе рифленые. Сплавы АМг1, АМг2, АМг3, АМг4 хорошо деформируются и в горячем и в холодном состоянии. Листы обладают удовлетворительной штампуемостью. Нагартовка заметно снижает штампуемость листов. Листы этих марок применяются для конструкций средней нагруженности.

Листы из АМг6 и АМг6 в упрочненном состоянии не поставляются. Применяются для конструкций повышенной нагруженности.

Коррозионная стойкость. Сплавы АМг отличаются высокой коррозионной стойкостью в растворах кислот и щелочей. Сплавы АМг1, АМг2, АМг3, АМг4 имеют высокую коррозионную стойкость к основным видам коррозии как в отожженном так и в нагартованном состонии.

Сплавы АМг5, АМг6 склонны к коррозии под напряжением и межкристаллитной коррозии. Для защиты от коррозии листы и плиты из этих сплавов плакируются, а заклепки из АМг5п ставят только анодированными.

Свариваемость.

Все сплавы АМг хорошо свариваются аргоннодуговой сваркой, но характеристики сварного шва зависят от содержания магния. С ростом его содержания уменьшается коэффициент трещинообразования, возрастает пористость сварных соединений.

Сварка нагартованных листов устраняет нагартовку в зоне термичес-кого влияния сварного соединения, механические свойства в этой зоне соответствуют свойствам в отожженном состоянии. Поэтому сварные соединения нагартованных листов АМг имеют меньшую прочность по сравнению с основным материалом.

Сварные соединения АМг1, АМг2, АМг3 обладают высокой стойкостью против коррозии. Для обеспечения коррозионной стойкости сварного шва АМг5 и АМг6 требуется специальная термообработка.

Листы и плиты из Д1, Д16, В95 .

Высокопрочные сплавы Д1, Д16, В95 имеют низкую устойчивость к коррозии. Поскольку листы из них используются в конструкционных целях, то для коррозинной защиты они плакируются слоем технического алюминия. Следует помнить , что технологические нагревы плакированных листов из сплавов, содержащих медь (например Д1, Д16), не должны даже кратковременно превышать 500 С.

Наиболее распространены листы из дуралюминия Д16. Фактические значения механических параметров для листов из Д16АТ (по сертификатам качества) составляют: предел текучести? 0.2 = (28-32), предел прочности при разрыве ? в = (42-45), относительное удлинение ? =(26-23%).

Сплавы этой группы свариваются точечной сваркой, но не свариваются плавлением. Поэтому основной способ их соединения - заклепки. Для заклепок используется проволока из Д18Т и В65Т1. Сопротивление срезу для них соответственно 200 и 260 МПа.

Из толстолистового проката доступны плиты из Д16 и В95. Плиты поставляются в состоянии "без термообработки", но возможно термоупрочнение уже готовых деталей после их изготовления. Прокаливаемость Д16 допускает термоупрочнение деталей сечением до 100-120 мм. Для В95 этот показатель составляет 50-70 мм.

Листы и плиты из В95 имеют большую (по сравнению с Д16) прочность при работе на сжатие.

Наличие листов и плит - см. на странице сайта "Алюминиевые листы"

********************

Выше кратко рассмотрены свойства алюминиевых сплавов общего назначения. Для специальных целей применяются или другие сплавы, или более чистые варианты сплавов Д16 и В95. Чтобы представить многообразие специальных сплавов, применяемых в авиа-ракетной технике, стоит зайти на сайт http://

Механические свойства алюминиевых сплавов определяются их химическим составом, состоянием (обработкой), видом и размерами полуфабрикатов, наличием или отсутствием плакировки и т. д. Поэтому приведенные в табл. 1 данные о химическом составе и механических характеристиках приняты с некоторым осреднением по сравнению с данными СНиП П-Е.5-64. Диаграммы растяжения и сжатия разных алюминиевых сплавов сравнительно мало отличаются друг от друга, однако в отличие от стали у них отсутствует площадка текучести; за условный предел текучести сплавов принимается обычно напряжение при относительном остаточном удлинении 0,2%.

Таблица 1. Алюминиевые сплавы для строительства (СНиП II-В.5-64)
Группа сплава
Марка и состояние сплава
Легирующие компоненты в %
Механические свойства
магний
марганец
кремний
цинк
медь
прочие
σ в, кГ/мм 2
σ 0,2 , кГ/мм 2
τ в, кГ/мм 2
δ, %
НВ, кГ/мм 2

А. Деформируемые сплавы для элементов конструкций

Алюминий технический

Сумма примесей 0,7 %

Алюминий-марганец

Алюминий-магний (магналии)

0,2-0,6*

0,2-0,6*

Титан 0,02-9,1

АМг61-М**

Алюминий-магний-кремний

Хром 0,15-0,35

0,15-0,35*

Алюминий-цинк-магний

Алюминий-медь-магний (дуралюмин)

Алюминий-цинк-магний-медь

Хром 0,1-0,25

Б. Деформируемые сплавы для заклепок и болтов

Алюминий-медь-магний

Алюминий-цинк-магний-медь

Титан 0,02-0,08

В. Сплавы для литых деталей

Алюминий-магний

Г. Сплавы для сварных соединений По СНиП П-В.5-64.

Проволока сварочная из алюминия и алюминиевых сплавов принимается по ГОСТ 7871

* Марганец или хром в том же количестве.** Данные - ориентировочные.

Химический состав и механические характеристики алюминиевых сплавов для строительства, включенных в СНиП П-В.5-64, приведены в табл. 1.

Перечисленные в табл. 1 алюминиевые сплавы предназначаются:

для ограждающих конструкций - АД1-М, АМц-М, АМг-М и АД31-Т; эти сплавы отличаются высокой коррозионной стойкостью и технологичностью;

для конструкций, совмещающих несущие и ограждающие функции (в зависимости от необходимой прочности и коррозионной стойкости) - АМц-М, АМц-П, АМг-М, АМг-П, АМг5-М, АД31-Т, АД31-Т1, АД33-Т, АД33-Т1, АД35-Т, АВ-М, АВ-Т; эти сплавы отличаются высокими или средними показателями коррозионной стойкости и технологичности;

для несущих сварных конструкций - АМг5-М, АМг6-М, АМг61-М, АД33-Т1, АВ-Т1, В92-Т; сплав АВ-Т1 по условиям коррозионной стойкости должен применяться с содержанием меди до 0,1%;

для несущих клепаных и болтовых конструкций - те же сплавы, что и для несущих сварных конструкций с добавлением сплавов Д1-Т, Д16-Т и В95-Т1; однако последние три сплава обладают пониженной коррозионной стойкостью.

Помимо перечисленных СНиП II-В.5-64 предусматривает применение при соответствующем обосновании и других марок и состояний алюминиевых сплавов.

Для заклепок и болтов помимо указанных в табл. 4.17 могут применяться сплавы АД1-М (нагартованные заклепки), АМц, АМг5п-М (здесь индексом «п» обозначен сплав для изготовления проволоки и прутков), АМг, АД33-Т1, АВ-Т1 и др.

За нормативное сопротивление деформируемых алюминиевых сплавов растяжению, сжатию и изгибу принимается меньшая из двух величин: 0,7 наименьшего временного сопротивления разрыву, установленного стандартами или техническими условиями, или условный предел текучести, соответствующий напряжению при относительном остаточном удлинении 0,2%.

Ударная вязкость алюминиевых сплавов меняется в пределах от 1 кГм/см 2 (В95-Т1) до 9 кГм/см 2 . Данные по пределу выносливости (усталости) приведены в СНиП II-В.5-64.

Коэффициент линейного расширения алюминиевых сплавов α=23·10 -6 град -1 т. е. примерно вдвое больше, чем у стали. Однако температурные напряжения в алюминиевых конструкциях ниже, чем в стальных конструкциях, в связи с более низким значением Е. Модуль сдвига G=270 000 кГ/см 2 .

Приводимые в СНиП П-В.5-64 расчетные сопротивления соответствуют температуре металла от -40 до +50° С. При понижении температуры от -40 до -70° С расчетные сопротивления не меняются.

При повышении температуры сверх 50 и до +100° С к расчетным сопротивлениям вводятся понижающие коэффициенты 0,8-0,95 в зависимости от марки сплава и условий работы конструкции. При температуре свыше 100° С должны приниматься еще более низкие значения коэффициентов или использоваться теплопрочные алюминиевые сплавы.

Листы из алюминиевого сплава марки АМг1

Область применения:

Ненагруженные сварные и несварные детали с полируемыми поверхностями, от которых требуется высокая коррозионная стойкость, работающих длительно в интервале температур от -196 до 200 °С

Основная информация о товаре

Сплав марки АМг1 – наименее прочный сплав в группе магналиев, термически неупрочняемый, коррозионностойкий, свариваемый сплав системы Al-Mg.
Листы из сплава марки АМг1 хорошо подвергаются полировке в электролитах, применяются в изделиях, где требуются высокие коррозионная стойкость, пластичность, свариваемость.

Технические характеристики

Механические свойства листов толщиной 2 мм в отожженном состоянии по паспорту на материал:
Временное сопротивление (σВ) – от 78,4 до 137,3 МПа
Относительное удлинение (δ) (при l₀=11,3√F₀) – от 25 до 30 %
Модуль упругости при растяжении (Е) – 70 ГПа
Плотность (d) – 2700 кг/м³
Сплав обладает высокой коррозионной стойкостью.

Листы из алюминиевого сплава марки АМг2

Область применения:

Для сварных и несварных малонагруженных изделий, от которых требуется высокая коррозионная стойкость

Основная информация

Сплав марки АМг2 – термически неупрочняемый, коррозионностойкий, свариваемый сплав системы Al-Mg. Склонность к межкристаллитной коррозии (МКК) и расслаивающей коррозии (РСК) отсутствует.
Полуфабрикаты из сплава марки АМг2 применяются в изделиях, где требуются высокие коррозионная стойкость, пластичность, свариваемость и относительно невысокие механические свойства.

Технические характеристики

Механические свойства листов из сплава марки АМг2 в отожженном состоянии (М) толщиной от 0,3 до 0,4 мм:
— по ОСТ 1 90166-75 (направление вырезки образцов — поперечное (П)):
Временное сопротивление (σВ) — не менее 167 МПа
Относительное удлинение (δ) — не менее 16,0 %
— по паспорту на материал:
Модуль упругости при растяжении (Е) — 67,6 ГПа
Плотность (d) — 2680 кг/м³

Трубы из алюминиевого сплава марки АМг2



Область применения:

Для сварных и несварных малонагруженных изделий, от которых требуется высокая коррозионная стойкость

Основная информация

Сплав марки АМг2 – термически неупрочняемый, свариваемый сплав системы Al-Mg. Сплав обладает высокой коррозионной стойкостью, склонность к межкристаллитной коррозии (МКК) и расслаивающей коррозии (РСК) отсутствует. Полуфабрикаты из сплава марки АМг2 применяются в изделиях, где требуются высокие коррозионная стойкость, пластичность, свариваемость и относительно невысокие механические свойства.

Технические характеристики

Механические свойства труб из сплава марки АМг2:
―по ОСТ 1 90038-88 (направление вырезки образцов — поперечное (П)):
— в отожженном состоянии (М):
Временное сопротивление (σВ) – от 155 до 215 МПа
Относительное удлинение (δ) – не менее 15,0 %
— нагартованные (Н):
Временное сопротивление (σВ) – не менее 225 МПа
― по паспорту на материал:

Плотность (d) – 2680 кг/м³

Штамповки (поковки) из алюминиевого сплава марки АМг2

Сплав марки АМг2 – термически неупрочняемый, коррозионностойкий, свариваемый сплав системы Al-Mg. Склонность к межкристаллитной коррозии (МКК) и расслаивающей коррозии (РСК) отсутствует.

Область применения:

Для сварных и несварных малонагруженных изделий, от которых требуется высокая коррозионная стойкость.

Основная информация о товаре

Сплав марки АМг2 – термически неупрочняемый, коррозионностойкий, свариваемый сплав системы Al-Mg. Склонность к межкристаллитной коррозии (МКК) и расслаивающей коррозии (РСК) отсутствует.
Полуфабрикаты из сплава марки АМг2 применяются в изделиях, где требуются высокие коррозионная стойкость, пластичность, свариваемость и относительно невысокие механические свойства. Рекомендован на замену сплава марки АМц.

Технические характеристики

Механические свойства штамповок и поковок из сплава марки АМг2 в отожженном состоянии (М):
— по ОСТ 1 90073-85 (направление вырезки образцов — высотное (В)):
Временное сопротивление (σВ) – не менее 135 МПа
Относительное удлинение (δ) – не менее 11,0 %
-по паспорту на материал:
Модуль упругости при растяжении (Е) – 67,6 ГПа
Плотность (d) – 2680 кг/м³

Разработчик(и): ФГУП «ВИАМ

По вопросам приобретения термически неупрочняемых сплавов на основе алюминия марки АМг1 и АМг2 (деформирумых) и получения подробной консультации по свойствам продукции, условиям поставки и заключению договора просим Вас обратиться к менеджерам.