Кто изобрел токарный станок. Краткий исторический обзор развития токарного станка Кто первый в мире придумал токарный станок

В настоящее время широко известен токарный станок. История его создания начинается с 700-х годов н.э. Первые модели применялись для обработки древесины, 3 века спустя был создан агрегат для работы с металлами.

Первые упоминания

В 700-х годах н.э. был создан агрегат, частично напоминающий современный токарный станок. История его первого удачного запуска начинается с обработки древесины методом вращения заготовки. Ни одной детали установки не было сделано из металла. Поэтому надежность таких устройств довольна низкая.

В то время низкий КПД имел токарный станок. История производства восстановлена по сохранившимся чертежам, рисункам. Чтобы раскрутить заготовку требовалось 2 крепких подмастерья. Точность получаемых изделий невысокая.

Информацию об установках, отдаленно напоминающих токарный станок, история датирует 650 годом до н. э. Однако общим у этих машин был только принцип обработки — методом вращения. Остальные узлы были примитивны. Заготовка приводилась в движение в прямом смысле руками. Использовался рабский труд.

Созданные модели в 12 веке уже имели подобие привода и на них могли получить полноценное изделие. Однако держателей инструмента еще не было. Поэтому о высокой точности изделия было рано говорить.

Устройство первых моделей

Старинный токарный станок зажимал заготовку между центрами. Вращение осуществлялось руками всего на несколько оборотов. Неподвижным инструментом осуществлялся рез. Аналогичный принцип обработки присутствует в современных моделях.

В качестве привода для вращения заготовки мастера использовали: животных, лук со стрелами привязанный веревкой к изделию. Некоторые умельцы для этих целей строили подобие водяной мельницы. Но значительно повысить производительность так и не получалось.

Первый токарный станок имел деревянные части, и с увеличением количества узлов терялась надежность устройства. Водяные приспособления быстро теряли актуальность ввиду сложности ремонта. Только к 14 веку появился простейший привод, значительно упростивший процесс обработки.

Ранние приводные механизмы

Прошло несколько веков с изобретения токарного станка до реализации на нем простейшего приводного механизма. Представить его можно в виде жерди закрепленной посередине на станине поверх заготовки. Один конец очепа привязан веревкой, которая обернута вокруг заготовки. Второй закреплен с педалью для ног.

Этот механизм успешно работал, но не мог дать необходимую производительность. Принцип работы был построен на законах упругой деформации. При нажатии на педаль осуществлялось натяжение веревки, жердь изгибалась и испытывала значительное напряжение. Последнее передавалось заготовке, приводя ее в движение.

Провернув изделие на 1 или 2 оборота, жердь освобождалась и снова изгибалась. Педалью мастер регулировал постоянную работу очепа, заставляя непрерывно вращаться заготовку. Руки при этом были заняты инструментом, совершая обработку древесины.

Этот простейший механизм унаследовали следующие версии станков, которые уже имели кривошипно-шатунный механизм. Аналогичную конструкцию привода впоследствии имели механические швейные машинки 20-го века. На токарных станках при помощи кривошипа добились равномерного движения в одну сторону.

За счет равномерного движения мастера стали получать изделия правильной цилиндрической формы. Единственное чего не хватало — жесткости узлов: центров, державок инструмента, приводного механизма. Из дерева изготавливались держатели резцов, что приводило к их отжиму при обработке.

Но, несмотря на перечисленные недостатки, стало возможным выпускать даже шарообразные детали. Обработка металлов еще была затруднительным процессом. Даже мягкие сплавы вращением не поддавались реальному точению.

Положительным сдвигом в конструировании станков было внедрение универсальности в обработке: уже на одной машине выполнялась обработка заготовок различного диаметра и длины. Это достигалось регулируемыми держателями и центрами. Однако большие детали требовали значительных физических затрат мастера на реализацию вращение.

Многие умельцы приспособили маховик из чугуна и других тяжелых материалов. Использование силы инерции и притяжения облегчило труд обработчика. Однако промышленных масштабов достигнуть было еще сложно.

Металлические детали

Основной задачей изобретателей станков было повысить жесткость узлов. Началом технического перевооружения стало применение металлических центров, зажимающих заготовку. Позже уже внедрили шестеренчатые передачи из стальных деталей.

Металлические запчасти позволили создать винторезные станки. Жесткости уже хватало для обработки мягких металлов. Постепенно совершенствовались отдельные узлы:

  • держатель заготовок, позже названный главным узлом — шпинделем;
  • конусные упоры оснащались регулируемыми механизмами для изменения положения по длине;
  • работа на токарном станке стала легче с изобретением металлического держателя инструмента, но требовался постоянный отвод стружки при повышении производительности;
  • чугунная станина повысила жесткость конструкции, что позволило обрабатывать детали значительной длины.

С внедрением металлических узлов раскрутить заготовку становится сложнее. Изобретатели задумались о создании полноценного привода, желая исключить ручной труд человека. Система передач помогла осуществить задуманное. Паровой двигатель впервые был приспособлен для вращения заготовок. Ему предшествовал водяной двигатель.

Равномерность перемещения режущего инструмента осуществлялась червячной передачей при помощи рукоятки. Благодаря этому получалась более чистая поверхность детали. Сменные блоки позволили реализовать универсальную работу на токарном станке. Механизированные конструкции усовершенствовались столетиями. Но по сей день принцип работы узлов базируется на первых изобретениях.

Ученые изобретатели

В настоящий момент, покупая токарный станок, технические характеристики анализируют в первую очередь. В них приводятся основные возможности в обработке, габариты, жесткость, скорость производства. Ранее с модернизацией узлов постепенно вводились параметры, согласно которым модели сравнивали между собой.

Классификация машин помогала оценивать степень совершенства того или иного станка. После анализа собранных данных отечественный изобретатель времен Петра I-го, модернизировал предыдущие модели. Его детищем стал настоящий механизированный станок, позволяющий производить различные виды обработок тел вращения, нарезать резьбу.

Плюсом в конструкции Нартова была возможность изменять скорость вращения подвижного центра. Также им были предусмотрены сменные блоки шестерен. Внешний вид станка и устройство напоминают современный простейший токарный станок ТВ3, 4, 6. Аналогичные узлы имеют и современные обрабатывающие центры.

В 18-ом веке Андрей Нартов представил миру самоходный суппорт. передавал равномерное перемещение инструмента. Генри Модсли, английский изобретатель, представил свою версию важного узла к концу столетия. В его конструкции изменение скорости перемещения осей осуществлялось благодаря разному шагу резьбы ходового винта.

Основные узлы

Для обработки 3D-деталей резанием методом вращения идеально подходят токарные станки. Обзор современной машины содержит параметры и характеристики основных узлов:

  • Станина — основной нагруженный элемент, рама станка. Изготавливают из прочных и твердых сплавов, преимущественно применяется перлит.
  • Суппорт — остров для крепления вращающихся инструментальных головок либо статичного инструмента.
  • Шпиндель — выступает в роли держателя заготовок. Основной мощный узел вращения.
  • Дополнительные узлы: ШВП, оси скольжения, механизмы смазки, подачи СОЖ, воздухоотборники из рабочей зоны, охладители.

Современный токарный станок содержит приводные системы, состоящие из сложной электроники управления и двигателя чаще синхронного. Дополнительные опции позволяют убирать стружку из рабочей зоны, измерять инструмент, подавать СОЖ под давлением непосредственно в область реза. Механика станка подбирается индивидуально под задачи производства, от этого зависит и стоимость оборудования.

Суппорт содержит узлы для размещения подшипников, которые насажены на ШВП (шарико-винтовую пару). Также на нем монтируются элементы для контакта с направляющими скольжения. Смазка в современных станках подается автоматически, контролируется ее уровень в бачке.

В первых токарных станках перемещение инструмента осуществлял человек, он выбирал направление его движения. В современных моделях все манипуляции осуществляет контроллер. Понадобилось несколько веков для изобретения подобного узла. Электроника значительно расширила возможности обработки.

Управление

В последнее время распространены токарные станки с ЧПУ по металлу — с число-программным управлением. Контроллер управляет процессом реза, отслеживает положение осей, вычисляет движение по заложенным параметрам. В памяти хранится несколько этапов реза, вплоть до выхода готовой детали.

Токарные станки с ЧПУ по металлу могут иметь визуализацию процесса, что помогает проверить написанную программу до начала движения инструмента. Весь рез можно увидеть виртуально и вовремя исправить ошибки кода. Современная электроника контролирует нагрузку на оси. Последние версии программного обеспечения позволяют определить поломанный инструмент.

Методика контроля поломанных пластин на державке основана на сравнении графика нагрузок оси при нормальном режиме работы и при превышении аварийного порога. Отслеживание происходит в программе. Сведения для анализа контроллеру подает приводная система либо датчик мощности с возможностью оцифровки значений.

Датчики положения

Первые станки с электроникой имели концевики с микровыключателями для контроля крайних положений. Позже на винтопару стали устанавливать кодеры. В настоящее время используются высокоточные линейки, способные замерить люфт в несколько микрон.

Оснащаются круговыми датчиками и оси вращения. мог быть управляемым. Это требуется для реализации фрезерных функций, которые выполнялись приводным инструментом. Последний часто встраивался в револьверную головку.

Измерение целостности инструмента производится при помощи электронных щупов. Они же облегчают работу по поиску точек привязки для старта цикла реза. Зонды могут замерять геометрию получаемых контуров детали после обработки и автоматически вносить корректоры, закладываемые в повторную чистовую обработку.

Простейшая современная модель

Токарный станок ТВ 4 относится к учебным моделям с простейшим приводным механизмом. Все управление осуществляется вручную.

Рукоятки:

  • регулируют положение инструмента относительно оси вращения;
  • задают направления нарезания резьбы правой или левой;
  • служат для изменения числа оборотов главного привода;
  • определяют шаг резьбы;
  • включают продольное перемещение инструмента;
  • отвечают за крепление узлов: задней бабки и ее пиноли, головки с резцами.

Маховики перемещают узлы:

  • пиноль задней бабки;
  • каретку продольную.

В конструкции предусмотрена цепь освещения рабочей зоны. Система безопасности в виде защитного экрана предохраняет работников от попадания стружки. Конструкция станка компактная, что позволяет его использовать в учебных классах, помещениях сервиса.

Токарно-винторезный станок ТВ4 относится к простым конструкциям, где предусмотрены все необходимые узлы полноценной конструкции по обработке металлов. Шпиндель имеет привод через коробку передач. Инструмент закреплен на суппорте с механической подачей, приводится в движение винтопарой.

Размеры

Шпинделем управляет асинхронный двигатель. Максимальный размер заготовки может быть в диаметре:

  • не более 125 мм, если проводить обработку над суппортом;
  • не более 200 мм, если обработка проводится над станиной.

Длина заготовки зажимаемой в центрах не более 350 мм. В сборе станок весит280 кг, максимальные обороты шпинделя 710 об/мин. Эта скорость вращения является определяющей при чистовой обработке. Питание производится от сети 220В частотой 50 Гц.

Особенности модели

Коробка скоростей станка ТВ4 связана с двигателем шпинделя клиноременной передачей. На шпиндель же вращение передается от коробки через ряд шестерней. Направление вращения заготовки легко меняется фазировкой главного двигателя.

Гитара служит для осуществления передачи вращения от шпинделя к суппортам. Имеется возможность переключать 3 скорости подачи. Соответственно нарезается три разного типа метрические резьбы. Плавность и равномерность хода обеспечивает ходовой винт.

Рукоятками задается направление вращения винтопары передней бабки. Также рукоятками задаются скорости подач. Суппорт ходит только в продольном направлении. Узлы следует смазывать согласно регламентам станка вручную. Шестерни же забирают смазку из ванны, в которой они работают.

На станке реализована возможность работы вручную. Для этого используются маховики. Происходит зацепление реечной шестерни и зубчатой рейкой. Последняя прикручена к станине. Такая конструкция позволяет при необходимости включать ручное управление станком. Аналогичный маховик применяется для перемещения пиноли задней бабки.

Конец XVIII - начало XIX в. был переломным периодом в процессе совершенствования различных видов металлообрабатывающего оборудования. Распространение металла в качестве основного конструкционного материала потребовало существенной модернизации материалообрабатывающих станков. Привод существовавших тогда станков оказывался слишком маломощным для обработки металла, а усилия руки, держащей резец,- недостаточными, чтобы снимать большую стружку с заготовки. В результате этого обработка металла оказывалась малоэффективной. Необходимо было заменить руку рабочего специальным механизмом, а мускульную силу человека - более мощным двигателем.

Первое было решено созданием подвижного резцедержателя или суппорта. Говоря о суппорте, как об одном из принципиально важных изобретений, связанных с промышленной революцией конца XVIII в., К. Маркс отмечал, что «это механическое приспособление заменяет не какое-либо особенное орудие, а самую человеческую руку, которая создает определенную форму, направляя, подводя резец и т. д. к материалу труда, например к железу» (Маркс К., Энгельс Ф. Соч., т. 23, с. 396 ). Таким образом стало возможным придавать геометрические формы отдельным частям машин с такой степенью легкости, точности и быстроты, которую не смогла бы обеспечить и самая опытная рука искуснейшего рабочего.


Токарный (фузейный) станок 1741 г. по Тиу

Создание механического суппорта положило начало широкому применению станков. Для работы на немеханизированном токарном станке, несмотря на его простоту, необходимо было, помимо чисто профессионального умения, обладать недюжинной силой, чтобы удержать в руках резец при обработке металла. Любое неожиданное отклонение от требуемой формы в результате случайности, какого-то толчка и т. п. зачастую приводило к необходимости перетачивать деталь по всей длине.

К идее механизированного передвижения резца машиностроители шли долго. Впервые эта идея возникла при решении таких технических задач, как нанесение резьбы, сложных узоров на предметы роскоши, изготовление зубчатых колес и т. д. Для получения резьбы на валу, например, необходимо было сначала произвести разметку; этого обычно достигали, навивая на вал бумажную ленту нужной ширины, по краям которой на вал наносили контур будущей резьбы. После разметки вал опиливали по контуру вручную напильником. Это длительный, сложный и трудоемкий процесс; кроме того, получаемое качество далеко не всегда бывало удовлетворительным, так как абсолютное соответствие размеров и форм зубьев резьбы труднодостижимо.

В середине XVIII в. идея механизированного передвижения резца была воплощена в различных конструкциях станков часовых мастеров. Однако все эти станки имели тот недостаток, что они были специализированными и их использование в ведущих отраслях формировавшейся тогда промышленности было затруднительно. Эта техническая проблема могла быть решена созданием универсального станка с суппортом.

В книге А. Тиу (1741 г.) приведено несколько схем токарных станков часовых мастеров. Наиболее сложными для обработки деталями в часовых механизмах были фузеи (навойки). Фузеи имели сложную улиткообразную форму, определяемую опытным путем. Они предназначались для компенсации неравномерности натяжения пружины. Получить вручную эту деталь было сложно, поэтому и были созданы специальные станки. Приведенные в книге станки имеют резцедержатели. Первый станок, помимо шагового винта, снабжен еще и сменными шестернями. Поперечная подача обеспечивается рычажным перемещением резца. Качество изготовления фузеи зависело от опытности рабочего.



Токарный станок французских часовых мастеров 1741 г. по Тиу

Кроме того, дано описание винторезного станка, снабженного механическим суппортом, приводимым в движение с помощью ходового винта, находящегося на одной оси со шпинделем. Станок был из металла. Система рычагов заменяла схему привода со сменными шестернями (смена шага резьбы производилась изменением плеч рычагов).

В 1763 г. в Париже была напечатана книга Ф. Берту , тоже посвященная часовому производству. В ней приведены две схемы станков часовых мастеров. Оба станка выполнены на весьма высоком техническом уровне, изготовлены из металла, их отличает высокая точность и простота управления.

При работе на фузейном станке, описанном Ф. Берту, квалификация рабочего не имеет большого значения, так как в его функцию входит только привести станок в движение и прижать резец к копиру (одна фузея нарезается в несколько заходов из необработанной болванки). Форма фузеи соответствует форме сменного копира, шаг нарезки определяется углом наклона подающего бруса. Передвижение суппорта с резцедержателем в продольном направлении механическое. Эти станки интересны тем, что они предназначались в основном для обработки металлов и отличались значительной точностью. Кроме того, на них уже обрабатывали серийные детали.

В 1771 г. в иллюстрациях к «Энциклопедии» Дидро и Д"Аламбера приведена вполне работоспособная конструкция резцовой каретки, использовавшаяся на орнаментальных станках. Правда, в этих станках не использовался принцип механического передвижения суппорта вдоль изделия, примененный на станках А. К. Нартова (см. главу X) и на станках французских часовых мастеров. В «Энциклопедии» приводится вид токарной мастерской, в которой использовались только токарные станки без крепления режущего инструмента. По-видимому, резцедержатели использовались на орнаментальных и точных станках, а большинство работ выполняли на ручных станках.^

Вторая половина XVIII в. ознаменовалась резким увеличением сферы применения металлорежущих станйов и поисками удовлетворительной схемы универсального токарного станка, который мог использоваться в различных целях и позволял решать целый комплекс технических задач. Подобно тому, как на базе более ранних пароатмосферных машин Дж. Уатт создал свой универсальный двигатель, универсальный токарный станок строился на опыте эксплуатации первых станков с механизированным передвижным суппортом.

В 1751 г. Ж. Вокансон во Франции построил очень интересный станок, который по своим техническим данным уже походил на универсальный. Он был выполнен из металла, имел мощную станину, два металлических центра, две направляющие F-образной формы, механизированное перемещение медного суппорта в продольном и поперечном направлениях. В то же время в этом станке отсутствовала система зажима заготовки в патроне, несмотря на то, что это устройство уже существовало в более ранних конструкциях станков французских часовых мастеров. Заготовка на станке Вокансона крепилась в центрах, доступ к которым был затруднен находящимися с обеих сторон стойками. Неясна система привода вращения и связь ее с системой перемещения резца. Станок сохранился до наших дней (экспонируется в Лувре), но неизвестно, для выпуска каких деталей он предназначался. Можно предположить, что это был специализированный станок, на котором обрабатывались детали одного определенного типа, так как система крепления не предусматривала возможности зажима заготовок разного размера (расстояние между центрами, в которых крепилась заготовка,- около 1 м, а задний центр мог быть передвинут лишь примерно на 0,1 м).



Токарный (фузейный) станок 1763 г. по Берту (Франция)

Заслуживает внимания также и станок другого французского механика - Сено, изготовленный в 1795 г. Конструктор предусмотрел сменные шестерни, большого размера винт (длиной более 1 м и диаметром более 50 мм), простой механизированный суппорт. Станок специализированный - для нарезки и доводки винтов. Все части станков Сено и Вокансона имели высокое качество обработки, на них не было украшений, как это было принято делать раньше.

В 1778 г. англичанин Д. Рамсден предложил два типа станков для нарезания резьб. В первом станке вдоль вращаемой детали по параллельным направляющим передвигался алмазный режущий инструмент, перемещение которого задавалось вращением эталонного винта. Станок позволял при одном эталоне получать гамму резьб за счет смены шестерен. Второй станок давал возможность изготовлять резьбу с различным шагом на детали большей длины, чем длина самого эталона. Резец продвигался вдоль заготовки с помощью струны, накручивавшейся на центральную шпонку. Эти станки уже включали элементы универсального токарного станка, но все же они не могли использоваться как универсальные.



Расточный станок Д. Смитона 1769 г. (Англия)

На процесс создания таких станков влияли опыт изготовления и эксплуатация других видов металлообрабатывающего оборудования. К ним относятся сверлильные и расточные станки. До середины XVIII в. использовались довольно простые типы этих станков, которые применялись главным образом в оружейных мастерских.

Традиционные методы рассверловки заготовок удовлетворяли промышленность до тех пор, пока отверстия были относительно малы (до 180 мм), но для больших диаметров потребовались другие станки. Необходимость таких работ была связана прежде всего с созданием паровых машин. Уже первые машины Ньюкомена имели диаметр цилиндра порядка 500 мм при значительной длине (около 3 м). Более поздние модели паровых машин имели еще более значительные размеры. Несовершенство тогдашних расточных станков вынудило Дж. Уатта изготавливать цилиндр для своей первой паровой машины кованым. Для обработки деталей типа цилиндров паровых машин английский инженер Д. Смитон создал в 1769 г. станок, в котором борштанга была закреплена с двух сторон. Однако опорная тележка, поддерживающая борштан-гу, не обеспечивала достаточной точности (максимальная точность - 3/8 дюйма, т. е. 10 мм) и параллельность по всей длине, так как передвигалась внутри обрабатываемого цилиндра .



Суппорт орнаментального станка (из энциклопедии Дидро и Д"Аламбера) (1771 г.)

Полностью решить проблему расточки цилиндров практически любых размеров удалось только английскому механику Д. Вилкинсону в 1775 г., когда он построил на Бершемском заводе станок, в котором борштанга закреплялась с двух сторон в жестко закрепленных подшипниках скольжения и передвигалась вдоль цилиндра с помощью винтовой передачи. Станок Вилкинсона полностью удовлетворял Уатта, так как на нем растачивались детали диаметром более 1 м, причем зазор между цилиндром и поршнем «не превышал толщины шестипенсовой монеты» (примерно 1,5 мм). Это считалось тогда неплохим результатом.

Вообще-то нечто подобное было известно еще в рабовладельческой Элладе за несколько сотен лет до нашей эры. Принцип получения тел вращения, при котором необходимо вращать заготовку, прикасаясь к её поверхности более прочным и остро заточенным предметом, придумать оказалось легко.

Не было и проблем с источником энергии, поскольку здоровых и крепких рабов наличествовало в избытке. В более цивилизованные времена привод такого станка осуществлялся туго натянутой тетивой от лука. Но тут имелось существенное ограничение – скорость оборотов падала по мере раскручивания тетивы, поэтому в Средние века появились модели токарных станков с ножным приводом.

Устройство и принцип работы токарного станка с ЧПУ

Весьма отдалённо они напоминали швейную машинку — потому, что включали в себя традиционный кривошипно-шатунный механизм. Это оказалось весьма позитивным сдвигом: вращающаяся заготовка теперь не имела попутных колебательных движений, заметно усложняя работу мастера, и ухудшая качество обработки.

Вместе с тем к началу XVI века токарный станок по-прежнему имел ряд существенных ограничений:


  • Держать резец следовало вручную, поэтому при продолжительной обработке металла рука токаря сильно уставала.
  • Поддерживающий длинные заготовки люнет крепился отдельно от станка, а поэтому его установка и поверка были довольно длительными.
  • Проблема удаления стружки так и не была решена: требовался подмастерье, который время от времени смахивал стружку с руки мастера.
  • Не был решён и вопрос равномерного перемещения резца по мере обработки: всё определялось квалификацией и опытом мастера.

Последующие несколько сотен лет были истрачены на конструирование привода вращения подвижного центра станка, в котором крепилась обрабатываемая заготовка. Наиболее удачной оказалась конструкция Жана Бессона, который впервые применил для этих целей водяной привод.

Станок оказался довольно громоздким, но именно на нём впервые была нарезана резьба. Произошло это в середине XVI века, а уже через несколько лет механик Петра I Андрей Нартов изобрёл механизированный станок, на котором можно было нарезать резьбу с изменяемой скоростью вращения подвижного центра. Характерной особенностью станка Нартова оказалось также наличие сменного блока шестерён.

Кто же изобрёл суппорт?


Суппорт – ключевой узел современного токарного станка, всё остальное могло в той или иной степени быть заимствовано из других механизмов. Вместе с тем имея приспособление для точного перемещения металлорежущего инструмента вдоль обрабатываемой поверхности, причём по всем трём координатам, можно было бы говорить о полнофункциональном станке для производства токарных работ. Но, как и в большинстве других случаев из истории техники, единоличное авторство в изобретении суппорта установить невозможно.

Что говорит о приоритете Андрея Нартова?


  • В копировальном станке Нартова самоходный суппорт появился в 1712 году, в то время как Генри Модсли представил свой вариант только в 1797 году.
  • Совместное перемещение копира и суппорта в варианте станка Нартова впервые производилась при помощи одного механизма – ходового винта.
  • Изменение скорости поперечной подачи технически обеспечивалось разным шагом резьбы на ходовом винте.

Термин «суппорт» (от французского слова support – поддерживаю) впервые ввёл в обиход Шарль Плюме, а уже станок, построенный его соотечественником Жаном Вокансоном, практически походил на тот, с которым ныне работают все токари.

У этого механизма появились точные для своего времени V-образные направляющие, а суппорт имел возможность перемещаться не только в поперечном, но и в продольном направлениях. Тем не менее, здесь тоже не всё было в порядке – в частности, отсутствовал патрон, где закреплялась бы обрабатываемая заготовка.

Это существенно суживало технологические возможности оборудования: например, была невозможной токарная обработка заготовок, которые имели разную длину. Да и вообще выполнять какие-либо другие операции, кроме нарезки резьбы на винтах, болтах и пр.

И тут на исторической сцене появляется Генри Модсли.

Универсальный токарный станок – время пришло

Во многих отраслях человеческой созидательной деятельности пальма первенства достаётся тому, кто не столько изобрёл нечто, но ещё и смог при этом аналитически верно обобщить опыт предыдущих поколений. Генри Модсли – не исключение.


Нет оснований утверждать, что Модсли примитивно украл схему суппорта у Андрея Нартова. Да, во времена Петра I не особо приветствовались связи с Англией, но зато крепкими были взаимоотношения с Голландией. Но учитывая то, что голландцы, в свою очередь, часто принимали у себя английских предпринимателей и просто мастеров, вполне вероятно, что об изобретении Нартова очень скоро стало известно и на берегах туманного Альбиона (хотя Модсли и сам мог узнать о станке Нартова, поскольку в те годы занимался строительством паровых машин для России).

Величие Генри Модсли в другом – он представил на суд заинтересованных лиц (а в Англии к тому времени промышленная революция шла полным ходом) концепцию первого, по-настоящему универсального станка для выполнения различных токарных операций. Оборудования, в котором органично были решены все проблемы токарного способа обработки изделий.


Первый суппорт у Модсли имел крестообразную конструкцию: для перемещения по направляющим имелись два ходовых винта. Но в 1787 году Модсли кардинально изменил порядок движений инструмента и заготовки: последняя оставалась неподвижно закреплённой, а вдоль её образующей теперь скользил суппорт. Для реализации этого изменения Модсли соединил один из ходовых винтов суппорта с передней бабкой при помощи зубчатой передачи (тот нюанс, до которого не додумался Нартов). В результате нарезание резьбы стало выполняться автоматически, а вручную производился лишь отвод суппорта после обработки детали.

Добавив позже в станок комплект сменных зубчатых колёс, Модсли добился того, что теперь присуще любому токарному станку – универсальности и технологического удобства работы.

Видео: Управление токарным станком

28 марта 1693 года в Москве родился Андрей Константинович Нартов, невероятно одарённый механик и изобретатель, человек, талант и мастерство которого будут отмечены Петром I. Двенадцать лет его жизнь и жизнь царя будут связаны так тесно, что вскоре его станут звать не иначе как «личным царёвым токарем». Император Всея Руси станет крестным отцом сыну Нартова, и временами царь Пётр Алексеевич и Андрей Константинович вместе будут ночевать в «Токарне» после длинного рабочего дня… А был Нартов в то время всего лишь «механиком, который чин состоит в ранге по табели прапорщичьем и с определённым жалованьем по триста рублей в год».

Поразительно, но в XVIII столетии не было опубликовано ни строчки о жизни человека, который сделал более 100 изобретений, выдвинувших Россию на передовые позиции в области станкостроения. Ни одна из книг, написанных Нартовым, не была издана при его жизни. Отдельные фрагменты его трудов были напечатаны лишь через сто лет после их написания. Иными словами, возможностей распространения идей Нартова среди русских механиков не оказалось, что привело к быстрой потере лидерства России в области технологий механообработки.

А ведь первый в истории механический суппорт с самоходом для токарного станка благодаря Нартову появился в России. Первый токарно-винторезный станок - в России. Первый токарно-копировальный станок - у нас, и всё это тоже изобрёл Нартов. После его визита в Париж президент Парижской академии наук Биньон в письме Петру I отмечал его «великие успехи» в отношении токарного станка: «Невозможно ничего видеть дивнейшего!» Восторг можно было понять: Нартов привёз во Францию станок с самоходным суппортом, механическим держателем резца и коробкой передач со сменными шестернями. И это было не последнее его достижение; он создал станок в 1717-м, за два года до этой поездки.

1719 год, Берлин. Увидев станок, привезённый Нартовым, прусский король Фридрих Вильгельм I признал: «У нас в Берлине такой машины нет». В том же году Нартов доносит царю из Лондона: «Здесь таких токарных мастеров, которые превзошли российских мастеров, не нашёл, и чертежи машинам, которые ваше царское величество приказал здесь сделать, я мастерам казал, и оные сделать по ним не могут».

В своей книге, которая называлась «Театрум Махинариум, то есть Ясное зрелище махин», Нартов поместил полное руководство по конструированию разнообразных станков с чертежами отдельных узлов и рекомендациями будущим конструкторам (выше приведены иллюстрации из этой книги), но до конца столетия, увы, она так и не попадёт в руки читателей. Вспоминая об Андрее Константиновиче Нартове, чаще всего имеют в виду его творчество в области станкостроения, а ведь его заслуги перед Россией далеко не исчерпываются этим. О нескольких менее известных занятиях «царёва токаря» сегодня и поговорим.

«Кто не позван, да не входит сюда…»

Когда умер Пётр I, у Нартова возникли серьёзные проблемы в отношениях с Александром Меншиковым, который был злопамятен и хорошо запомнил, как однажды… Впрочем, слово самому Нартову:
«Некогда князь Меншиков, пришед к дверям токарной комнаты его величества, требовал, чтобы его туда впустили, но, увидя в том препятствие, начал шуметь. На сей шум вышел к нему Нартов и, удержав силою туда войти хотевшего князя Меншикова, объявил ему, что без особого приказа от государя никого впускать не велено, и потом двери тотчас запер. Такой неприятный отказ сего честолюбивого, тщеславного и гордого вельможу весьма рассердил, что он в запальчивости, оборотясь, с великим сердцем сказал: “Добро, Нартов, помни это”. Государь же начертал слова и сказал: “Вот тебе оборона; прибей сие к дверям и на угрозы Меншикова не смотри”. - “Кому не приказано, или кто не позван, да не входит сюда не токмо посторонний, но ниже служитель дома сего, дабы хотя сие место хозяин покойное имел”».

В 1726 году Нартова выставили из дворцовой мастерской и отправили в Москву «на монетные дворы для переделу монеты двух миллионов». Состояние дел там было плачевным. Директор Монетного двора Волков докладывал: «Непорядка и разорения монетных дворов изобразить никоим образом нельзя… Нет ни форм, во что плавить, ни мехов к кузницам».
Нартов практически с нуля восстановил производство, сконструировал и внедрил новый тип станка для насечки на ребре монеты; под его руководством изготавливают новое прессовое оборудование для чеканки монет. Через год из Москвы в Петербург доставили донесение: «Запустелые дворы в состояние приведены», а Нартова… отправляют ещё дальше - «по должности механического искусства на Сестрорецкие заводы для переделу в монету двадцати тысячей пудов красной меди». Описание конструкций оборудования, созданного в этот период, Нартов собирается издать в качестве инженерного пособия. «К монетному делу книга, в которой имеет быть описание всем махинам и инструментам, с надписанием каждого звания махины и инструмента, и оным меры, и во что оные могут встать» была им написана, но рукопись после его смерти оказалась утеряна.

Меры и веса

Ещё в период работы на монетных дворах Нартов обнаружил вопиющие факты расхождения в весах гирь, применявшихся для взвешивания цветных металлов, в том числе золота. Впервые он поднимает вопрос о создании государственной системы средств измерений, причём «по согласности с протчими европейскими государствами». На монетном производстве он внедряет систему поверки механических весов, совершенствует технологию литья серебра, исключающую потери металла, учреждает систему сквозной регистрации технологических операций и нормировки расхода и потерь металла. Обо всём этом он докладывает в Петербург главе монетного департамента М. Г. Головкину - и тут же получает крепкий выговор за то, что «не по своему призванию представляет»: дескать, чего механику лезть в дела мер и весов.

И тем не менее сегодня мы можем признать, что Нартов явился основоположником отечественной метрологии. Именно он внёс предложение о создании государственных эталонов весов и мер. Вскоре ему поручают изготовить образцовые меры длины «из меди и крепкого дерева», а также разработать конструкцию образцовых весов. С этим заданием Нартов блестяще справляется в компании светил академической науки. В докладе от имени Академии наук, касающемся работ по образцовым мерам и весам, подписи авторов идут в таком порядке: «Асессор Андрей Нартов. Леонард Эйлер. Георг Вольфганг Крафт». И сообщалось в нём об изготовлении «асессором Нартовым из зелёной меди четвероугольных кубических пуда и фунта»; решение: «Те пуд и фунт в комиссию принять и деньги означенному асессору Нартову выдать».

Царь-колокол

В 1734 году мастер-литейшик М. И. Моторин, отвечавший за изготовление невиданного 200-тонного Царь-колокола, обратился к Нартову с просьбой помочь в деле извлечения гигантской отливки из земляной литейной ямы. Ранее сконструированную Моториным подъёмную «махину» Нартов раскритиковал: «Прежде бывший мастер колокольный Моторин сделал приуготовление для поднятия кожуха, на что я ему советовал, что оная его сделанная махина поднять кожуха не сможет». Так и получилось. Подъёмник Моторина не выдержал и обрушил крышку литейной формы на колокол, который чудом не пострадал.

Тогда Нартов сконструировал свою «подъёмную махину», при помощи которой «тот кожух благополучно и поднят» («А тяжести в нём было, например, более семи тысящ пуд»). Проект более совершенного подъёмного механизма для извлечения отлитого Царь-колокола был поручен Нартову, который в короткие сроки изготовил его на основании «правил математических, механических и физических». К сожалению, воспользоваться им не удалось. 29 мая 1737 года в Кремле случился большой пожар. Вода, которой тушили огонь, попала на горячую поверхность отливки, которая дала трещины, а впоследствии из тела колокола «выпал кусок весом около 700 пудов».

«Секретные палаты»

В 1738 году в Петропавловской крепости Нартов обустраивает «секретные палаты» - по сути, первый в истории России инженерный центр по созданию артиллерийского вооружения, которое (забегая вперёд) стараниями Андрея Константиновича вскоре станет лучшим в мире. Именно здесь, в «секретных палатах», создаёт он первое своё военное изобретение - машину для сверления пушечных стволов.

За сравнительно небольшой срок из его «конструкторского бюро» выходит более 40 конструкций и технологий изготовления пушек различного назначения. Военным особенно понравились разработанные Нартовым способы заделки внутренних раковин и больших дефектов литья в каналах медных и особенно чугунных пушек при помощи «секретной зачинки». До этого пушки, у которых при литье образовывались каверны, рытвины и «проколы», определялись как брак и отправлялись на переплавку. Внедрение метода Нартова позволяло такие пушки доводить до полностью кондиционного состояния, что неоднократно было проверено практическими стрельбами. Экономический эффект просто поражал: ремонт полностью бракованной пушки стоимостью в 4 рубля 18 копеек обходился в 27 копеек. А качество пушки оказывалось таково, что «в новых местах в металле от чрезвычайной стрельбы раковины делались, а зачинка устояла».

Нартов разработал оптический прицельный прибор «для лучшего способа к стрелянию и из пушек, мортир и гаубиц, и к самому скорейшему навождению в цель без рычагов», благодаря которому точность стрельбы российских батарей значительно превысила аналогичные показатели артиллерии европейских стран.

Особо впечатляет нартовская скорострельная артиллерийская установка, состоящая из 44 трёхфунтовых мортир, установленных на поворотном круге. Во время стрельбы мортиры чистились, заряжались и оснащались запалами, поворачиваясь на подвижном основании.

2 мая 1746 года в признание заслуг Нартова высочайшим указом ему была пожалована награда в 5 тысяч рублей, отписаны несколько деревень в Новгородском уезде, а сам изобретатель был произведён в генеральский чин статского советника. А начинал он, как мы помним, прапорщиком…

Краткая информация:

Танк Т-34-85 был поставлен на производство зимой 1943-1944 гг. Он вооружался 85-мм пушкой, установленной в литой башне, первоначально разрабатывавшейся для тяжелого танка КВ-85. База танка почти не изменилась по сравнению с Т-34-76. Увеличенная башня вмещала трех членов экипажа, так что командир наконец был освобожден от посторонних функций и мог полностью сосредоточиться на своих основных обязанностях по руководству действиями экипажа.

Дата изобретения: 1904 г.

Краткая информация:

На рубеже XIX — XX вв. во всем мире парусный флот был оттеснен на второе место паровым. При этом кораблестроителям потребовались новые знания для решения многих проблем, связанных со строительством все более мощных кораблей. Назрела необходимость в создании научной теории кораблей. Одним из ее авторов стал русский ученый А.Н. Крылов.

Дата изобретения: 2011 г.

Краткая информация:

Турбогенератор — неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000, 1500 об/мин). Механическая энергия от турбины конвертируется в электрическую при помощи вращающегося магнитного поля, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, что в свою очередь приводит к возникновению трехфазного переменного тока и напряжения в обмотках статора.

Дата изобретения: 1712 г.


Описание:

Как утверждают историки, первый токарный станок был и изобретен еще в VII в. до н.э. Он представлял собой регулируемые тиски: мастер зажимал в них заготовку, а затем обрабатывал вручную. Такие станки предназначались главным образом для обтачивания деталей из дерева. Полумеханическая обработка заготовок вошла в практику в XV в., когда был изобретен нижний привод: токарь нажимал на педаль, после чего обрабатываемая деталь начинала вращаться, благодаря чему ее было легче обтачивать. Однако такие приводы были маломощными. Поэтому в металлообработке стали применять водяной привод, работавший по принципу водяной мельницы. С его помощью можно было создавать довольно сложные металлические фигуры, например шар или цилиндр.

В VII в. появились токарные станки, в которых обрабатываемое изделие приводилось в движение с помощью водяного колеса, но резец по-прежнему держал в руке токарь. А в XVIII в. токарные станки стали применяться в первую очередь для обработки металла. В связи с этим требовался очень твердый и усиленный (с жестким креплением) резец, способный долгое время не затупляться.

С 1712 по 1725 А. К. Нартов создал целый ряд моделей токарных станков. Часть из них была снабжена суппортами (подвижными приспособлениями для фиксирования резца) и набором сменных зубчатых колес, что позволяло изготавливать детали строго определенной геометрической формы. Однако по-прежнему трудными для выполнения на копировальном станке оставались операции, требующие особой точности: нанесение резьбы для ружей, сложных узоров на предметы роскоши (гравировка), обработка зубчатых шайб и шестеренок. Со временем А.К. Нартов усовершенствовал свои модели, благодаря чему стало возможны автоматическое передвижение суппорта вдоль оси, обрабатываемой заготовки. Правда, поперечной подачи еще не было. Поэтому работы над усовершенствованием суппорта продолжались.

Свой суппорт создали, в частности, тульские механик Алексей Сурнин и Павел Захава. Более совершенную конструкцию суппорта, близкую к современной, удалось придумать английскому станкостроителю Генри Модсли, но А.К. Нартов первым нашел путь к решению этой задачи. Можно считать, что станки Нартова имели стратегическое значение: с их помощью сверлились, например, дула пушек» ведь победы, русского оружия во многом зависели от артиллерии. В работе А.К. Нартова «Ясное зрелище махин» описано более 20 токарных, токарно-копировальных и токарно-винторезных станков различных конструкций.

Выполненные Нартовым чертежи и технические описания свидетельствуют о его больших инженерных познаниях. Деятельность этой мастерской имела решающее значений для развития приборостроительной отрасли в России: созданные Нартовым станки позволяли значительно увеличить точность изготовления деталей для всех используемых в то время инструментов, что впоследствии оценили М.В. Ломоносов и И.П. Кулибин, проводившие свои опыты (каждый в свое время) именно на станках Нартова.

100 великих русских изобретений, Вече 2008