Селекционные в животноводстве. Крупномасштабная селекция в животноводстве на современном этапе. Основные породы овец

Российский государственный аграрный университет

Московская сельскохозяйственная академия имени К. А. Тимирязева

Кафедра разведения и племенного дела

Курсовая работа

Тема: «Маркерная селекция в животноводстве»

Выполнила: студентка 3го курса

Зооинженерного факультета

Группы 301

Дольникова Ольга

Москва 2011 год

Введение

Основы маркерной селекции

Наиболее важные ДНК-маркеры

Значение маркерной селекции в животноводстве

Заключение


Введение

Основной задачей современного животноводства является получение высокопродуктивных животных, дающих высококачественную продукцию. Большинство показателей продуктивности имеет полигенную природу и определяется многими генами при взаимодействии с окружающей средой. Повышение эффективности селекции будет зависеть от подбора генотипов к конкретным условиям среды.

С целью выявления наиболее успешных генотипов используют генетические маркеры. В конце 70-х появилась возможность идентифицировать большое количество маркеров. Они позволяют получать информацию о разных состояниях генов и исследовать, как их варианты имеют преимущественное распространение у животных с наиболее желательными комплексами признаков.

Особую актуальность, как считает Е.И. Кийко, имеет нахождение локализации гена на хромосоме количественных признаков (QTL) с целью оценки генетических параметров и аддитивного генетического влияния.

Для решения этой проблемы существует направление в племенном деле - селекция с помощью маркеров. Целью ее является замена селекции по фенотипу на селекцию на уровне ДНК.

Основой маркерной селекции является нахождение локусов количественных признаков, которые отвечают за экономически важные продуктивные признаки. Достаточно идентифицировать маркер с неизвестной функцией, связанный с QTL и определить сцепление между аллелями в маркерном локусе.

Одним из самых важных направлений является поиск маркеров, которые позволяют выявить генотипы животных, обладающих хозяйственно-полезными признаками. Еще одно направление - поиск новых систем генетического маркирования.

В основу берут ДНК-маркеры, так как они имеют ряд преимуществ:

− наследование происходит по законам Менделя, что делает возможным непосредственный анализ генотипа;

путем подбора зондов может быть идентифицировано множество вариантов ДНК;

информативные зонды распределяются по всему геному;

возможность оценки генотипа не зависит от возраста и пола животного.

1. Основы маркерной селекции

Идея маркеров в том, считает Джулия ван де Веф <#"385" src="/wimg/11/doc_zip1.jpg" />

На рисунке показано, что из QTL только некоторые гены влияют на фенотип животного. Остальные гены вместе с ними определяют полную наследственную изменчивость. Хоть QTL объясняет только часть генотипа животного, информация, которую можно почерпнуть, добавляет точность к оценке истинного генотипа животного.

На рисунке изображено три быка с различными фенотипами. Верхняя часть показывает истинные аллельные ценности генов, отвечающих за массу тела. Нижний рисунок показывает, что наблюдается, если бы QTL был бы распознан в дополнение к фенотипу. маркерный селекция ген гетерозис

На рисунке предполагается, что племенная ценность и аллельные формы QTL известны. Но на практике это встречается не всегда. Фактически нельзя наблюдать непосредственное наследование QTL, но наблюдается наследование маркеров, которые схожи с QTL. Генетические маркеры как ориентиры, которые выбираются на основе схожести с QTL.

Генетические маркеры дают возможность к наиболее быстрому и точному генетическому анализу. Маркеры не оказывают влияния на организм животного, но они могут быть легко идентифицированы в лабораториях, поэтом можно определить какую разновидность маркера несет животное. Как и гены, генетические маркеры расположены в хромосомах последовательно.

Экспериментально можно определить генетические маркеры, которые располагаются на хромосоме близко к интересующим нас генам.

Но имеется ряд недостатков. У быка может быть 4 «типа» спермы. Но может произойти рекомбинация маркер A и гена B. Чем дальше маркер и ген располагаются друг от друга, тем выше вероятность кроссинговера. Кроссинговер - реальная проблема для маркерной селекции. Из-за него не всегда можно сказать какой маркер, с каким геном связан.

Нужно вести родословную и делать специальные измерения для того чтобы работать с кроссоверными генами. Если маркер расположен в пределах гена, то кроссинговер не является проблемой.

При выборе маркера надо учитывать какую информацию можно от него получить. При использовании прямых маркеров не возникает никаких проблем с определение генов QTL. Проблемы начинаются при использовании косвенных маркеров.

Маркерные гены используются для выявления важных для животноводства генов. Маркерные гены особенно важны, дли признаков, которые фенотипически проявляются относительно поздно или только у одного пола, а также для признаков, на проявление которых оказывают влияние негенетические факторы (факторы окружающей среды). Примерами такого рода признаков являются резистентность к болезням, предрасположенность к болезням, плодовитость, молочная продуктивность. Целью маркирования является установление сцепления между основным геном и маркерным геном у животного. Так, к примеру, длина хромосомы крупного рогатого скота в среднем составляет 100 сМ, достаточно иметь три удачно расположенных маркера на хромосому: два маркера, удаленных на расстояние около 20 сМ от центромеры или теломеры, и один - в центре. Следовательно, 90 расположенных данным образом маркерных локусов достаточно для полного картирования генома крупного рогатого скота.

В генетике животноводства большое значение для дальнейших разработок имеет тщательный выбор генотипов и структуры семьи, а также наличие банков ДНК и банков данных.

Среди множества генов, контролирующих продуктивность, можно выделить группу мажорных генов, вносящих наибольший вклад в формирование и функционирование данного количественного признака. К таким генам, например, относятся гены, кодирующие белки молока. Интерес исследователей к изучению генетического полиморфизма белков молока связан с тем, что их генетически детерминированные варианты оказывают значительное влияние на конкретные черты молочной продуктивности и, соответственно, могут быть использованы в качестве прямых генетических маркеров хозяйственно-полезных признаков. Внедрение генетических маркеров в качестве дополнительных критериев при отборе сельскохозяйственных животных ускоряет селекционный процесс и повышает его эффективность.

2. Наиболее важные ДНК-маркеры

Ценность информации о генотипе зависит от способности маркера предсказывать генотип животного.

Свойства ДНК-маркеров:

Возможность тестирования любых последовательностей генома.

Повсеместность распространения.

Возможность анализа материнского типа наследования (митохондриальная ДНК).

Возможность анализа отцовского типа наследования (Y-хромосома).

Стабильность наследования.

Отсутствие плейотропного эффекта.

Множественность аллелей.

Информативность о природе генетических изменений. - Возможность проведения ретроспективных исследований.

Возможность определения в любых тканях.

Возможность определения на любых стадиях развития.

Длительность хранения образцов ДНК.

Возможность использования гербарного материала, ископаемых остатков и т.п.

Полиморфные ДНК-маркеры

Открытие и выделение рестрицирующих эндонуклеаз, расщепляющих ДНК в участках со строго определенной последовательностью, позволило разработать маркеры на основе анализа рестрикционного полиморфизма ДНК (ПДРФ, англ. RFLP - Restriction Fragment Length Polymorphism) . Впервые ПДРФ был использован как генетический маркер в 1974 г. при идентификации термочувствительной мутации в геноме аденовируса. Однако широкое применение вариантов полиморфизма ДНК в качестве генетических маркеров началось с 1980 г. после выхода работы Ботштейна, в которой изучены свойства ПДРФ как генетического маркера, дано теоретическое обоснование его использования и предложен метод оценки уровня информативности. ПДРФ используют для анализа полиморфизма конкретных локусов (генов). С использованием ПДРФ-маркеров были получены первые успешные результаты по построению молекулярно-генетических карт многих видов растений и животных, накоплены обширные сведения о генетическом полиморфизме различных организмов, выявлены ассоциации с хозяйственно-полезными признаками. Важным достоинством данного типа маркеров является высокая воспроизводимость результатов, а также кодоминантный тип наследования. ПДРФ-локусы могут обладать множественными аллелями, что повышает их информативность.

Были изобретены в 1983 году, основаны на методе увеличения числа копий определенных участков ДНК. в процессе повторяющихся температурных циклов полимеразной реакции (ПЦР - полимеразная цепная реакция, англ. PCR - Polymerase Chain Reaction) .

Метод ПЦР позволяет быстро и с небольшими затратами материальных ресурсов и времени получить более 10 миллионов копий определенной последовательности ДНК, первоначально представленной одной или несколькими молекулами. Различные модификации метода ПЦР легли в основу создания разнообразных типов ДНК-маркеров, широко используемых в настоящее время в различных областях биологии и медицины.

Мономорфные ДНК-маркеры

STSs-маркеры - в 1989 году Ольсоном с соавторами была сформулирована идея создания системы STS-маркеров, которая была призвана стандартизовать все обозначения маркированных последовательностей ДНК в геноме и включить в себя все типы картированных последовательностей.

3. Значение маркерной селекции в животноводстве

Использование в возвратном скрещивании

Маркерная селекция после каждого возвратного скрещивания позволяет вести наблюдение за дальнейшим распространением желательного генотипа и на основании этого вести селекцию. Посредством маркерной селекции может быть значительно сокращено число необходимых возвратных скрещиваний, не препятствуя при этом симультативной селекции по признакам продуктивности в исходной популяции.

- Нахождение влияния генов на свойства продукции

Путем генной диагностики можно выяснить влияние генов на животноводческую продукцию. Например, влияние казеиновых генов на качество молока.

- Повышение эффективности оценки племенной ценности

При маркерной селекции можно не дожидаться фенотипического проявления, селекция может проводиться уже на эмбриональных стадиях, а для признаков, ограниченных полом, выполняться у обоих полов. Маркерная селекция делает возможным предселекцию индивидуумов, при которой, исходя из продуктивности родоначальниц и продуктивности сибсов, теоретически рассчитывается племенная ценность, и способствует усилению интенсивности селекции и к избеганию нежелательных эффектов селекции.

-Повышение эффекта гетерозиса

Эффект гетерозиса взаимосвязан с долей гетерозиготных генотипов в скрещиваемой популяции. Если известно достаточно полиморфных маркерных генов, то возможна относительно надежная оценка различных скрещиваний по ожидаемой степени гетерозиготности. Эти данные могут быть использованы для отбора пород или линий в программы по скрещиванию. Благоприятные комбинации аллелей могут быть достигнуты посредством соответствующих спариваний. Таким путем впервые удалось предсказать специфическую комбинативную изменчивость. При разведении популяций может использоваться прогнозирование средней степени гетерозиготности потомства от запланированных спариваний.

Заключение

Маркерная селекция - перспективная отрасль в разведении, позволяющая более достоверно определить генотип интересующих нас животных.

Это позволяет улучшить и ускорить племенную работу, направленную на улучшение хозяйственно-полезных признаков.

Маркерная селекция включает в себя экономические соображения, основы фенотипической селекции, текущее состояние маркеров, состояние генетических карт, методы обнаружения QTL.

Список использованной литературы

1.Кийко Е.И. Принципы маркерной селекции в молочном скотоводств // Вестник ТГУ, т.15, вып. 1, 2010

2. Julius van der Werf . Identifying and incorporating genetic marker and major genes in animal breeding programs. Belo Horizonte - Brasil: 2000

Шендаков А.И, Т.А. Шендакова Генетические аспекты модернизации молочного скотоводства// Вестник ОрегГАУ, №2, 2009

Храброва Л.А. Маркер-вспомогательная селекция в коневодстве // Loshadi Creative Team, 2002

Сулимова Г.Е. ДНК-маркеры в генетических исследованиях: типы маркеров, их свойства и области применения// электронный журнал (http://www.lab-cga.ru/articles/Jornal01/Statia1.htm)

Аржанкова Ю.В. Использование ДНК-маркеров и дерматологлифического полиморфизма носогубного зеркала в селекции молочных пород скота// диссертация на соискание ученой степени, 2010

(http://discollection.ru/article/20122010_arzhankovauv)

8. Elcio P. Guimarães, John Ruane, Beate D. Scherf, Andrea Sonnino, James D. Dargie Marker-assisted selection, food and agriculture organization of the united nations Rome: 2007

9. Брем Г., Кройслих Х., Штранцингер Г., Экспериментальная генетика в животноводстве. М.:1995.

1. Особенности селекции животных

2. Методы селекции животных.

3. Успехи селекции животных

4. Селекция микроорганизмов

1. Селекция животных, как и селекция растений , базируется на наследственной изменчивости и искусственном отборе, способ­ствующем фенотипическому проявлению желательных для чело­века признаков (хозяйственно ценных, декоративных). В то же время селекция животных имеет свои особенности, вытекающие из самой природы животных. Все одомашненные животные (по­звоночные и беспозвоночные) размножаются только половым пу­тем. Наземные позвоночные животные (птицы, млекопитающие) имеют немногочисленное потомство, поэтому для селекционной работы значительную ценность может представлять каждая от­дельная особь.

Любой организм представляет собой целостную систему, в ко­торой наблюдается тесная взаимосвязь и взаимозависимость меж­ду отдельными органами тела и внешним его строением. В зоотех­нии учитывают всю совокупность признаков, как внешних (эксте­рьер - внешние формы телосложения животного), так и внутрен­них (интерьер - внутреннее строение органов и тканей, биохими­ческие и физиологические особенности организма животного), бусловливающих продуктивность породы и ее племенные качества. Развитие многих хозяйственно важных признаков связано с опреде­ленным телосложением (экстерьерные признаки) сельскохозяй­ственного животного, что принимают во внимание в селекционной работе. Например, заметно различается телосложение шортгорн-ского (мясного) и джерсейского (молочного) крупного рогатого скота (рис. 2.19). Установлена закономерность: улучшение питания поло­жительно сказывается на развитии желательного признака - у мяс­ных пород наблюдается увеличение массы, у молочных - удоя.



Первым этапом селекции животных было их приручение. Влия­ние приручения животных на изменчивость исследовано академи­ком Д. К. Беляевым. Выяснено, что одомашнивание животных зна­чительно ослабило действие стабилизирующего отбора. Ослабление отбора сопровождалось расширением диапазона изменчивости. На базе повышенной изменчивости человек проводил отбор желатель­ных признаков: у крупного рогатого скота - на мясные и молочные качества, у овец - на количество и качество шерсти и т.д.

В настоящее время интенсивно развивается такая отрасль хо­зяйства, как пушное звероводство. Пушные звери, составляющие основу национального пушного богатства страны (лисица, песец, норка, соболь, хорек, куница и др.), содержатся в специальных звероводческих фермах и проходят первый этап одомашнивания - приручение (рис. 2.20). Параллельно проводится интенсивная се­лекционная работа. Например, у американской норки получены сотни цветных вариаций окраски меха. Из песцов особую ценность представляет голубой песец (островная форма песца), которого в нашей стране разводят начиная с 1930 г. У лисиц ценится мех тем­ных (чернобурых) лисиц. Очень ценен для пушного звероводства соболь, распространенный в России от Урала до Тихого океана, особенно мех баргузинского соболя (Баргузинсклй заповедник, Байкал).

2. Методы селекции животных. В селекционной работе большое зна­чение имеет знание родословной, свойств и признаков родите­лей, что позволяет успешнее проводить подбор производителей для получения необходимых качеств у потомства. В племенных хозяйствах ведут племенные книги, в которых учтены экстерьер-ные признаки и продуктивность родительских форм за большое число поколений. Все это позволяет с той или иной степенью вероятности прогнозировать генотип потомков и их фенотипи-ческие качества.

В животноводстве применяют два типа скрещивания: неродствен­ное и родственное. Неродственное скрещивание в сочетании со стро­гим отбором особей способствует стабилизации свойств породы или даже их улучшению в ряду последующих поколений. При скре­щивании различных пород животных} или пород, относящихся к разным видам, получают потомство, превосходящее исходные родительские формы по своим размерам и отличающееся более высокой жизнеспособностью. Это явление (такое же, как и у рас­тений) носит название гетерозиса, или гибридной силы. В последу­ющих поколениях эффект гетерозиса не проявляется. В практике птицеводства и животноводства гибриды первого поколения, об­ладающие повышенной мощностью, используются в хозяйствен­ных целях. Близкородственное скрещивание осуществляют в случаях, когда необходимо большинство генов породы перевести в гомозиготное состояние. Близкородственное скрещивание приводит к закрепле­нию хозяйственно ценных признаков. Сохранение желательных при­знаков у потомства объясняется его гомозиготностью по этим при­знакам. Вместе с тем такое скрещивание приводит к ослаблению животных, повышенной восприимчивости их к заболеваниям. Для того чтобы избежать негативных тенденций, после близкородствен­ного скрещивания проводят скрещивание различных линий. При этом рецессивные гены переходят в гетерозиготное состояние и не проявляются в фенотипе породы.

3. Успехи в селекции животных. Используя достижения генетики и методы современной селекции, животноводы получили много за­мечательных пород животных.

Было обнаружено, что у некоторых видов домашних животных возможна полиплоидия. Отечественный биолог Б.Л.Астауров (1904- 1974), используя метод отдаленной гибридизации и поли­плоидию, создал полиплоидную форму тутового шелкопряда, в геноме которого находятся хромосомы двух разных видов.

Большое значение в создании новых устойчивых пород имеет скрещивание домашних животных с дикими формами. Так, Н. С. Ба­турин и Я.Я.Лусис провели серию скрещиваний дикого барана архара с овцами-мериносами и получили новую породу - архаро­мериноса, сочетающую в себе высокие качества шерсти тонкорун­ных овец и отличную приспособленность к условиям высокого­рья, характерную для архара. Ученые-селекционеры ведут работу по созданию новой породы крупного рогатого скота, выдержива­ющего суровые условия высокогорий. В частности, успешно про­водятся работы по гибридизации яка с крупным рогатым скотом. У потомства, полученного от такого скрещивания, проявляется эф­фект гетерозиса. Самцы от подобного скрещивания бесплодны, но самки плодовиты.

Тот же эффект гетерозиса проявляется при скрещивании кобы­лы с ослом. Полученные гибриды (мулы) выносливее исходных родительских форм, обладают большой физической силой и жи­вут значительно дольше. Но мулы бесплодны.

От дикого предка свиней - кабана были выведены европей­ские породы (рис. 2.21). Высокопродуктивную породу свиней со­здал отечественный селекционер академик М.Ф.Иванов серией скрещиваний в сочетании с жестким отбором между беспородной украинской свиньей и белой английской. В результате сложной и длительной селекционной работы получена новая вы­сокопродуктивная порода - белая степная украинская свинья. От украинской свиньи она унаследовала высокую плодбвитость, хо­рошую выносливость и неприхотливость, а от английской по­роды - большую массу и отличные мясные качества. В средней полосе России на основе местного поголовья путем строгого подбора производителей была создана костромская по­рода крупного рогатого скота. Продуктивность костромских коров по молоку достигает 15 - 16тыс. л в год.

4. Селекция микроорганизмов. Микроорганизмы были открыты в XVII в. голландским натуралистом Антони ван Левенгуком (1632- 1723). К микроорганизмам относятся прокариоты (бактерии) и эукариоты (микроскопические грибы и водоросли, простейшие). Иногда к микроорганизмам относят вирусы. Микроорганизмы рас­пространены повсеместно (в воздухе, воде, почве) и играют ис­ключительную роль в круговороте веществ в биосфере. Велико зна­чение микроорганизмов для человека. Они используются в разных областях промышленности, медицины и сельского хозяйства, в хлебопечении, получении кормового белка, виноделии, произ­водстве молочнокислых продуктов, аминокислот, витаминов, не­которых ферментов, производстве силоса, для биологической за­щиты растений, очистки сточных вод и др.

Трудно переоценить значение антибиотиков для человека. Ан­тибиотики - это особые химические вещества, образующиеся в результате жизнедеятельности микроорганизмов и способные в малых дозах оказывать избирательное токсическое действие на другие микроорганизмы и клетки злокачественных опухолей. Ви­тамины, необходимые для человека, также вырабатываются неко­торыми микроорганизмами.

Методами современной селекции выводят наиболее продуктив­ные формы полезных микроорганизмов. Например, для производ­ства необходимых антибиотиков и витаминов отбирают микроор­ганизмы, которые наиболее активно синтезируют соответствую- щие соединения. В настоящее время в селекции микроорганизмов широко применяется метод экспериментального получения мута­ций - искусственный мутагенез. В качестве мутагенов (инициато­ров мутаций) выступают рентгеновские или ультрафиолетовые лучи, иногда используют некоторые химические соединения. Так, с помощью искусственного мутагенеза удается значительно рас­ширить диапазон наследственной изменчивости микроорганизмов. В результате работ отечественного микробиолога С. И. Алиханяна, связанных с использованием искусственного мутагенеза, в про­мышленности антибиотиков удалось получить мутированные фор­мы, продуктивность которых в десятки раз выше, чем у исходных микроорганизмов.

Путем мутагенеза удалось вывести штаммы бактерий и грибов, наиболее продуктивных в синтезе необходимых человеку антибио­тиков и витаминов. Например, микроорганизмы получают для про­изводства витаминов В 2 и В 12 .

Биотехнология. Термин «биотехнология» получил широкое рас­пространение начиная с середины 1970-х гг., хотя хлебопечение, пивоварение, сыроварение, основанные на применении, микро­организмов, известны с незапамятных времен. Биотехнология - это использование живых организмов (особенно микроорганиз­мов) и биологических процессов в производстве. В биотехноло­гии используются успехи биохимии, микробиологии, инженер­ных наук.

С помощью современной биотехнологии разработаны методы биологической очистки сточных вод, защиты растений от вреди­телей и болезней, производства антибиотиков, ферментов, гор­монов и других биологически активных веществ. Разработаны про­мышленные методы получения белков, аминокислот. Отходы не­фтяной промышленности создают питательную среду для некото­рых бактерий и дрожжей. Созданный ими белок используется как полноценная кормовая добавка: он богат ценной незаменимой ами­нокислотой лизином. Нехватка лизина в растительной пище ведет к задержке роста сельскохозяйственных животных.

Развитие клеточной и генной (генетической) инженерии позволя­ет получать ценнейшие препараты: инсулин, интерферон, гормон роста человека и т.д. Методами клеточной инженерии получают культуры клеток или тканей, которые в дальнейшем могут исполь­зоваться для продукции ценных веществ, которые обычно синте­зирует целый организм. Клеточная инженерия позволяет также получать гибриды на основе соединения не половых, а соматичес­ких клеток. Таким методом были получены продуктивные сомати­ческие гибриды картофеля, томатов, некоторых плодово-ягодных культур. Большое значение для медицины, в частности, для про­мышленного производства ценных лекарственных препаратов, имеет метод гибридизации животных клеток. Например, гибриды раковых клеток и клеток крови в больших количествах вырабаты­вают соединения, повышающие иммунитет организма.

На основе генной инженерии возникла новая отрасль фарма­цевтической промышленности - «индустрия ДНК». Так, посред­ством рекомбинантных ДНК был получен инсулин человека (ху-мулин). С помощью генной инженерии были разработаны методы перестройки генотипа некоторых прокариот, что позволяет управ­лять основными жизненными процессами организма. Методы пе­рестройки генотипа (встраивание в него отдельных генов или, наоборот, их вычленение) реальны к применению и на однокле­точных эукариотах.

Методами генной инженерии удалось встроить ген человека, ответственный за синтез определенного белка в генотип бактерии кишечной палочки. В генной инженерии наиболее часто в качестве клетки-хозяина используют кишечную палочку. Бактерии кишеч­ной палочки со встроенным геном инсулина - основа промыш­ленного производства этого ценнейшего гормонального препара­та, используемого для лечения диабета.

С помощью кишечной палочки также синтезируют интерферо-ны - белки, подавляющие (ингибирующие) размножение виру­сов. На базе биотехнологии родилась и интенсивно развивается микробиологическая промышленность. Современная микробиоло­гическая промышленность выпускает высокоэффективные кормо­вые добавки, препараты для защиты растений от вредителей и болезней, бактериальные удобрения, препараты, использующие­ся в пищевой, химической промышленности и других отраслях народного хозяйства.

Прошел научный семинар «Геномная селекция в разведении крупного рогатого скота. Мировой опыт и использование в России». Сегодня мы расскажем о нем чуть подробнее.


Геном коровы расшифрован

В Голландии уже давно разработана система раннего прогнозирования генетических возможностей быков. И хоть в России о ней стало известно пять лет назад, сегодня еще мало кто действительно владеет этим вопросом в полной мере.

Быки, которых завозит Россия из Канады, Голландии и других стран Европы уже имеют геномную оценку, но грамотно воспользоваться этой информацией могут в нашей стране лишь единицы.

Ромейн Дассонневиль (Romain Dassonneville) - кандидат с/х наук, специалист по геномной селекции, генетическому моделированию, оценке и статистике выступил на семинаре с докладом об основных принципах геномной оценки бычков. Приводим здесь наиболее интересные фрагменты его выступления:


Методы оценки селекционного материала

Если говорить о геномной оценке, стоит сначала упомянуть о других методах, используемых в селекции КРС.

Сначала нам необходимо было решить, как выбрать тех животных, которые нам интересны. Ведь для выбора необходимо сравнить их.

Например, у нас два быка, дочери одного с продуктивностью 7,5 тысяч кг, другого - с продуктивностью 2 тысячи. На первый взгляд кажется, что тут все очевидно - следует выбрать быка, чьи дочери более продуктивны.

Но если мы будем ориентироваться только на производство молока, мы можем ошибиться. Поскольку как ни смотри на быков, не найти таких, все потомство которых дает молоко одинаково.

Когда же мы рассмотрим условия, в которых эти дочери содержались, то можем делать дальнейшие выводы. К примеру, дочери быка «А» живут на ферме с отличными условиями и . Здесь продуктивность может зависеть от условий содержания. Если условия разные, сделать выбор в пользу какого-нибудь быка уже не так просто.

Немаловажно также учитывать влияние коровы. Мы используем быков, дочери которых дают 9 тысяч кг, но один был использован на корове, дающей в среднем 8 тысяч, а другой - 11 тысяч.

Так что, если смотреть только на продуктивность дочерей - сделать действительно правильный выбор очень сложно.

Поэтому, для комплексной достоверной оценки нам необходима статистическая модель, объясняющая влияние окружающей среды и всех индивидуальных родственных связей. Сейчас во всем мире для этого используется метод BLUP.


Геномная оценка

Американская компания разработала чип, доступный для генотипирования у животных. Это позволяет определять при исследовании его крови В чипе - 54 тыс маркеров, охватывающих все хозяйственно-полезные признаки животных, необходимые для селекционной работы. Метод позволяет прогнозировать необходимые признаки у животных даже при отсутствии информации о их предках.

Традиционная схема селекционного отбора по потомству выглядит следующим образом: Мы выбирали быков по хорошим родителям, когда они рождались, выращивали их до двухлетнего возраста, после чего брали у них спермодозы для получения потомства в хозяйствах. И только после того, как их дочери начинали , быку-производителю можно было дать оценку. Продолжительность цикла составляла пять лет. Разумеется, в эффективности этого метода никто не сомневается, но он слишком длительный и очень затратный.

Геномный отбор все значительно упрощает. Уже после рождения у бычков можно взять кровь и сделать полную геномную оценку. И использовать такого быка можно сразу, как только он начнет производить семя. Геномный отбор намного дешевле, не нужно ждать 5 лет, а значит можно сэкономить на содержании быка все это время.

Чтобы делать генетическое улучшение популяции, необходима надежная оценка, высокая степень наследования и небольшой интервал между поколениями. Если сравнить геномный отбор и традиционную селекцию, по уровню качества потомства он практически такой же надежный, но более быстрый - здесь меньше интервал между поколениями. Геномный отбор может ускорить генетический прогресс.

У быков, которые оценивались по потомству, достоверность характеристик 80% и более, если смотреть достоверность индексов молодого бычка, у которого оценка только геномная, здесь достоверность 65-70% в зависимости от характеристик.

При оценке только по селекции и родословной достоверность не более 30%.


Чтобы создать геномную оценку необходимо:

Прежде всего - стандартная популяция животных - это популяция, у которой уже есть хорошая оценка по потомству. Быки, имеющие поколение дочерей, генотип которых также уже изучен. Такая популяция служит для создания таблицы сравнительных характеристик по маркерам. Когда есть и таблица и популяция, можно произвести генотипирование или геномную оценку у кандидатов и искать гены, которые приносит узкая геномная селекция.

Кандидаты - это бычки или телки, у которых нет еще оценки по потомству. Есть лишь проба крови и геномный анализ. Можно подсчитать индексы или показатели улучшения для данных характеристик.

Итак, оценка состоит из следующих этапов:

1. Хороший контроль продуктивности коров;

2. Оценка быков по потомству методом BLUP;

3. Информация о геномной оценке стандартной популяции - самый важный этап, позволяющий посмотреть влияние маркеров на хозяйственно-полезные признаки популяции;

4. Геномная оценка кандидатов в популяции;

5. Считывание индексов и отбор лучших быков для селекции.

Необходима информация о родословной, о фенотипе (по дочерям) и информацию по маркерам (из анализа крови), после этого идет отбор и тестирование различных моделей, существующих в мире.


Стандартные популяции мира

Стандартная популяция необходима для создания сравнительной таблицы. Чем она больше, тем информация по геномной оценке достовернее. К примеру, если мы рассматриваем только 4 тысячи животных, достоверность будет 40-50%, если 5 тысяч - достоверность приближается к 70%. Это самая важная задача - создать большую стандартную популяцию.

В Европе мы это сделали совместно с другими странами - у нас есть информация о животных совместной европейской популяции. В нее входят Германия, Франция, Скандинавия, Дания, Швеция, Испания, Польша и многие другие. В популяцию входят 25 тысяч быков с оценкой по потомству и геномной оценкой. А все новые геномные быки, которые есть в Европе, оцениваются и сравниваются с этой популяцией.

Северо-Американская популяция животных объединяет всех быков из США и Канады. Сегодня их стандартная популяция - 18,5 тысяч быков.

Romain Dassonneville - кандидат с/х наук, специалист по геномной селекции, генетическому моделированию, оценке и статистике

А знаете ли вы, что коров можно приучить есть сорняки? Читаем

Селекция это наука о методах создания сортов и гибридов сельскохозяйственных растений, пород животных, штаммов микроорганизмов. Также селекцией называют отрасль сельскохозяйственного производства, занимающуюся выведением сортов и гибридов различных культур, пород животных. Селекция разрабатывает способы воздействия на растения и животных с целью изменения их наследственных качеств в нужном для человека направлении. Селекция является одной из форм эволюции растительного и животного мира, которая подчиняется тем же законам, что и эволюция видов в природе, но естественный отбор здесь частично заменен искусственным отбором. Теоретическая основа селекция - генетика и разрабатываемые ею закономерности наследственности и изменчивости организмов. Эволюционная теория Чарльза Дарвина, законы Грегори Менделя, учения о чистых линиях и мутациях позволили селекционерам разработать методы управления наследственностью растительных и животными организмов.Большую роль в селекционной практике играет гибридологический анализ. На ранних этапах развития животноводства породы создавались в результате бессознательного отбора, под влиянием природно-экономических условий. По мере накопления зоотехнической информации складывались определенные методы создания пород по заранее намеченной программе отбора и подбора; для закрепления качеств начали использовать инбридинг (скрещивание животных находящихся в кровном родстве). Так выведены многие породы мирового значения (шортгорнская, голландская породы кр. рог. скота и др.). В селекции животных широкое применение получили современные генетические методы, в первую очередь, генетика популяций, а также иммуногенетика. Разработаны методы изучения изменчивости, наследуемости и генетической корреляции признаков, оценки генотипа животных и отбора плюс-вариантов, что и обеспечило более высокий научно-методический уровень селекционных работ. у домашних животных наблюдается явление гетерозиса.Гетерозис широко применяют в животноводстве и птицеводстве, так как первое поколение гибридов, обнаруживающее явление гибридной силы, непосредственно используют в хозяйственных целях. Особое внимание уделяется также селекции животных на улучшение качества продукции - повышение белковости молока у молочного скота, увеличение выхода мяса и уменьшение содержания жира в туше у мясных пород кр. рог. скота и свиней, получение шерсти необходимой длины и тонины у овец и др.

Разведение животных - это наука о качественном их совер­шенствовании, повышении наследственного потенциала, методах оценки, селекции, разведения, выращивания молодняка, создания новых пород. Она изучает и разрабатывает:


Экстерьер, интерьер, конституцию, индивидуальное развитие животных и методы управления им, продуктивность, методы ее оценки и учета, оценку племенных качеств животных по происхождению и качеству потомства, методы создания и совершенствования пород, методы разведения, проблемы выбора и отбора животных для племенных целей, системы подбора пар для спаривания, рациональное использование племенных животных, воспроизводство стада, методы получения трансгенных животных, системы племенной работы, племенной учет.

Разведение сельскохозяйственных животных как наука стало развиваться в XVIII в. наряду со становлением товарного живот­новодства. Историю развития учения о разведении животных мож­но условно разделить на пять периодов.

Первый период (XVIII - середина XIX в.) - это становление науки о разведении животных. Первой страной, в которой стала развиваться наука о разведении животных, была Англия

А. Веккерлин и другие ученые создали своеобразную теорию „константности породы". Немецкий ученый Г. Заттегаст выступил против нее, отметив, что порода должна быть податлива на воздействие работающего с ней. Он указывал, что чем лучше стадо, тем резче выражена индивиду­альность каждого животного.

Важным событием в науке о разведении животных стали со­чинения Ч. Дарвина „Происхождение видов" и „Изменение жи­вотных и растений под влиянием одомашнивания". В них он от­метил ряд важнейших закономерностей при совершенствовании системы разведения скота, разработал методы целенаправленного отбора, определил количество отбираемых животных, установил значение мелких и мельчайших полезных отклонений и возмож­ности их накопления у животных последующих поколений, дал объяснение отрицательным последствиям родственного спаривания и т. д.

С появлением генетики, основанной Г. Менделем, А. Вейсманом, Т. Морганом, развитие учения о разведении животных зна­чительно ускорилось.

Исследования роста и развития животных были проведены Д. Хеммондом . Е. Давенпорт в своей книге „Основы племенного разведения" дал рекомендации по совершенствованию племенных и продуктивных качеств животных, которые используются во всем мире и в настоящее время.

С. Райт научно обосновал возможность применения родствен­ного спаривания для закрепления наследственных признаков и предложил коэффициент определения его интенсивности.

Второй период (1870 - 1929 гг.). В нашей стране наука о разведении сельскохозяйственных животных стала формироваться во второй половине XIX в. на базе исследований, проведен­ных М. Ливановым, М. И. Афониным, И. А. Мерциловым, А. И. Бабиным, И. В. Сабуровым, В. И. Всеволодовым, И. Н. Чернопятовым, П. А. Дубовицким, И. М. Ревичем, А. М. Баженовым и другими. Основоположниками этой науки являются П. Н. Кулешов, Е. А. Богданов, М. И. Придорогин, А. А. Малигонов, М. Ф. Иванов.

П. Н. Кулешов заложил „фундамент" отечественной науки о разведении сельскохозяйственных животных. В своем классиче­ском труде „Научные и практические основания подбора пле­менных животных в овцеводстве" он описал проблемы наследст­венности и наследования признаков, в том числе приобретенных, проявления атавизма, дал конкретные рекомендации по скрещи­ванию пород, использованию родственного разведения в племен­ных стадах, подбору племенных производителей, создал научно обоснованную теорию отбора и подбора животных, получения но­вых их признаков с устойчивой закрепленной наследст­венностью.

На основании изучения строения организма и соотношения в нем тканей П. Н. Кулешов разработал классификацию основных типов конституции животных с учетом направления их продук­тивности: грубая и нежная, плотная и рыхлая. Она широко ис­пользуется в практике и в настоящее время.

Большое внимание П. Н. Кулешов уделял совершенствованию методов разведения и обоснованному их использованию в пле­менной работе. В брошюре „Методы племенного разведения до­машних животных" он дает советы по улучшению местных пород, предлагает методы разведения, которые приводятся ниже.

А. Чистое разведение

1. Чистопородное разведение: чистокровные и чистопородные животные, гомогенное и гетерогенное разведение в пределах той же породы.

2. Кровное разведение: разведение при отдаленном родстве, более близкое родственное, тесное родственное.

Б. Скрещивание

I. Скрещивание собственно или половинчатое (гибридизация, метизация).

1. Заводское скрещивание для выведения новых пород и типов.

2. Промышленное, или хозяйственное, скрещивание для по­лучения рыночных и пользовательных животных.

II. Прилитие крови, улучшение, или облагораживание.

III. Поглощение крови, или скрещивание с одной улучшающей породой в пяти поколениях.

П. Н. Кулешов изучил экстерьер и его взаимосвязь с кон­ституцией животных различных видов и направлений продуктив­ности. Результаты этих исследований приведены в книге „Выбор лошадей, молочного и мясного скота, овец и свиней по экстерье­ру", которая является лучшим научным трудом по экстерьеру сельскохозяйственных животных.

Большой заслугой этого ученого является усовершенствование системы селекционно-племенной работы, важное место в которой отводится однородному подбору. Он считал, что такой подбор - не просто средство закрепления уже имеющихся в стаде жела­тельных изменений, а важный фактор, усиливающий изменчи­вость признаков животных в желательном направлении. При этом можно не только сохранить качества лучших из них, но и по­лучить потомство с более высокой продуктивностью.

П. Н. Кулешов, используя свою систему селекционной работы, создал новокавказский тип мериносовых овец, отличающихся крепкой конституцией, большими размерами, высокой продуктив­ностью и хорошим качеством шерсти. Он провел большую работу по совершенствованию отечественных пород, способствовал раз­витию в стране высшего зоотехнического образования и научно-исследовательской деятельности в области животноводства, создал серию учебников по зоотехнии, выдержавших многочисленные пе­реиздания, сформировал научную школу, подготовил много та­лантливых ученых.

Е. А. Богданов - разносторонне эрудированный ученый. Он внес большой вклад в становление и развитие учения о разведении сельскохозяйственных животных в России. Заслуживают внимания его ранние научные работы „Очерки по спорным вопросам скотозаводского искусства" и „Чистое разведение, или скрещивание", в которых впервые достаточно четко определено значение чис­топородного разведения и скрещивания. Он ввел понятия „поро­ды" и „отродья" сельскохозяйственных животных, уделял большое внимание исследованиям, результаты которых подтверждали тео­ретические выводы.

Большое внимание Е. А. Богданов уделял изучению экстерьера. Результаты его исследований опубликованы в книге „Типы те­лосложения животных и человека и их значение". В ней отме­чено, что при разведении животных нужно знать законы появ­ления, видоизменения и наследования их форм и качеств и уметь управлять ими. Он предложил оригинальную классификацию ти­пов конституции и подчеркнул, что при оценке скота по внешнему виду (экстерьеру) основой должно быть учение о типах консти­туции. Основными факторами, формирующими различные кон­ституционные типы животных, он назвал наследственность и ус­ловия содержания.

Крупным вкладом в учение о разведении сельскохозяйственных животных стала научная работа Е. А. Богданова „Как можно ускорить совершенствование и создание племенных стад и пород", в которой дано обоснование их разведения получения желатель­ных признаков по линиям. Он отмечал, что разведение по линиям требует выделения высокопородных животных, поддержания в ря­де поколений потомства разумным спариванием в родстве и от­бором потомства определенного качества. Он разработал также методы совершенствования линий. Это дало ему основание ут­верждать, что линию определяет не происхождение, а возможная однородность качества животных.

Е. А. Богданов придавал большое значение исследованию ин­терьера сельскохозяйственных животных биохимическими и дру­гими научными методами с целью определения связи между их интерьерными показателями и хозяйственной ценностью. Большой его заслугой является издание учебника по разведению сельско­хозяйственных животных для высших сельскохозяйственных школ, который многие годы служил основным пособием для студентов. Представляют интерес его книги о наследственности: „Новое на­правление учений о подборе. Биометрика и ее значение в жи­вотноводстве", „Основные тайны подбора". Кроме монографий и книг он написал много научно-популярных брошюр, в которых объяснил биологические ос­новы животноводства, дал рекомендации по совершенствованию племенных и продуктивных свойств животных и повышению ка­чества продукции. Его считают основоположником научной зоо­технической школы по разведению сельскохозяйственных живот­ных.

Выдающимся основателем науки о разведении сельскохозяйст­венных животных является М. Ф. Иванов , внесший огромный вклад в теорию и практику организации племенного дела и вы­ведения новых пород. Он придавал большое значение влиянию природных и хозяйственных условий на животных. Ценность на­учных работ М. Ф. Иванова заключается в том, что все они учитывают народно-хозяйственные задачи. Теоретические вопросы в них подвергаются глубокому анализу, полученные результаты проверяются и применяются на практике с целью производствен­ной апробации.

При организации племенной работы и совершенствовании жи­вотных он уделял особое внимание крепости конституции. М. Ф. Иванов усовершенствовал классификацию типов консти­туции, введя пятый тип - „крепкая конституция". Большой его заслугой является создание новых отечественных пород - степной и украинской породы свиней, асканийской породы овец и горного мериноса по собственной методике, которая предусматривает скрещивание пород до получения второго поколения и дальнейшее разведение его „в себе", тщательный отбор улучшающей породы, оценку племенных и продуктивных качеств, выбор животных желательного типа и подбор для спаривания, создание хороших условий кормления, направленное выращивание молодняка. Особое внимание он уделял качеству кормов и кормлению, оказывающим значительное действие на интерьер и экстерьер жи­вотных и их продуктивность.

В своей работе „Порода и корм" М. Ф. Иванов отметил, что корма и кормление оказывают гораздо большее влияние на организм животного, чем порода и происхождение. Он считал, что современная селекционная работа должна базироваться не только на зоотехнических, но и на генетических данных, что явления доминирования наследственных признаков не абсолютны, что одни и те же признаки в условиях одних скрещиваний до­минируют, в других являются рецессивными, а в третьих про­являют неполное доминирование и в зависимости от условий могут изменяться.

М. Ф. Иванов создал ряд учебников для сельскохозяйственных вузов: „Овцеводство", „Свиноводство", „Сельскохозяйственное птицеводство", „Основы правильного кормления сельскохозяйст­венных животных" и др.

Третий период (1930 - 1965 гг.)- В это время интенсивно наращивался научный потенциал, создавались научно-исследова­тельские институты и опытные станции, крупные племенные хо­зяйства и государственные племенные рассадники, изучались на­следственность, изменчивость, интерьер и их влияние на про­дуктивность животных, большое внимание уделялось совершен­ствованию селекционно-племенной работы и созданию новых пород.

Четвертый период (1966 - 1985 гг.) характеризуется интен­сификацией животноводства на основе широкого использования достижений селекции и генетики, внедрения новых технологий, улучшения кормления, специализации и концентрации животно­водства. Все это вызвало необходимость изменения системы се­лекционно-племенной работы, создания новых специализирован­ных пород и типов животных, соответствующих требованиям промышленных технологий, повышения их наследственного по­тенциала и продуктивности, разработки новых методов оценки и селекции.

Титова Елена, Авчинка Инга

История селекции.

Возникновение селекции связано с введением в культуру растений и одомашниванием животных. Начав возделывать растения и разводить животных, человек стал отбирать и размножать наиболее продуктивные, что способствовало их непроизвольному улучшению. Так на заре человеческой культуры возникла примитивная селекция. Её история исчисляется тысячелетиями. Древние селекционеры создали прекрасные сорта плодовых растений, винограда, многие сорта пшеницы, породы домашних животных. Им были известны некоторые современные селекционные приёмы. Например, искусственное опыление финиковой пальмы применяли в Египте и Месопотамии за несколько веков до н. э. С развитием земледелия и животноводства искусственный отбор лучших форм приобрёл массовый сознательный характер - появилась народная селекция. В России крестьяне создали сорта пшеницы (Крымка, Белотурка, Полтавка, Гарновка и др.), подсолнечника (Зелёнка, Фуксинка), высокорослые кряжи льна-долгунца (Смоленский, Псковский), сорта клевера (Пермский), яблони (Антоновка, Грушовка) и др., получившие название местных, или стародавних, хорошо приспособленные к местным условиям произрастания. Лучшие сорта хлопчатника СССР и США берут своё начало от форм, происхождение которых связано с культурой майя. В Перу выращивают кукурузу с очень крупным зерном (относится к Куско-группе), созданную много веков назад. В результате длительной народной селекции получены каракульская и романовская породы овец, арабская и ахалтекинская породы лошадей, серый украинский скот, ярославская и холмогорская молочные породы крупного рогатого скота и др. В дальнейшем местные сорта и породы были использованы для выведения селекционных сортов и пород. Развитие капитализма оказало большое влияние на селекционную практику, привело к зарождению промышленной селекции. В конце 18 - начала 19 вв. в Великобритании были впервые созданы селекционные питомники, организовано племенное животноводство. Племенными животными Великобритания снабжала многие страны. Во 2-й половине 19 в. повысился интерес к выведению новых сортов растений. В Германии Ф. Ахард заложил основы селекции сахарной свёклы на повышенное содержание сахара и высокую урожайность. В Европе и Америке были созданы промышленные семенные фирмы, крупные селекционно-семеноводческие предприятия. В 1774 под Парижем основана селекционная фирма «Вильморен», снабжающая семенами всю Францию и экспортирующая их во многие страны. В США опытно-селекционые станции и лаборатории были организованы в каждом штате. Селекцией занимались также семеноводческие компании. Л. Бёрбанк вывел сорта плодовых и декоративных растений. В это же время в США, Франции, Великобритании, Швеции и других странах проводилась большая работа по сбору растительных ресурсов, интродукции растений. Растительные коллекции стали исходным материалом для выведения новых сортов. Большое влияние на развитие селекции оказали открытия в области ботаники, зоологии, микроскопической техники. С изобретением специальных приборов, инструментов, машин селекционный процесс всё более механизировался, Несмотря на значительные успехи, промышленная селекция была лишена тех научных предпосылок, которые позволили ей в дальнейшем превратиться в теоретически обоснованную селекционную науку. Селекционеры 18-19 вв. действовали лишь на основании опыта и интуиции, хотя и применяли многие современные методы. Решающую роль в возникновении научной селекции сыграло эволюционное учение Ч. Дарвина, становление и развитие общей генетики, а затем генетики растений и генетики животных, радиационной генетики.

В России началом развития научной селекции считается 1903 - год организации Д. Л. Рудзинским при Московском сельскохозяйственном институте селекционные станции, на которой были выведены первые в стране сорта зерновых культур и льна. Больших успехов достигла селекция после Октябрьской революции 1917. В 1921 был принят декрет «О семеноводстве», подписанный В. И. Лениным, заложивший основы единой государственной системы селекционно-семеноводческие работы в СССР. В 20-30-е гг. создана сеть новых научно-исследовательских селекционных учреждений, организовано государственное сортоиспытание, проводится сортовое районирование, развернулись большие генетические и селекционные исследования. Открытый Н. И. Вавиловым гомологических рядов закон в наследственной изменчивости, обоснованные им теория центров происхождения культурных растений, эколого-географические принципы С., учение об исходном материале растений и иммунитете растений стали широко использовать в селекционной практике.

Селекция за рубежом.

Применяя те же методы, что и в СССР, селекционеры ряда стран добились больших успехов.

В США селекционная работа сосредоточена в государственных университетах, на эксперимент, опытных станциях (организованы в каждом штате), в с.-х. колледжах и семеноводческих компаниях. В качестве исходного материала используют сорта и гибриды многих стран. Достигнуты значительные успехи в селекции короткостебельной стекловидной озимой пшеницы - сорта Гейнз, Ньюгейнз, Кэпрок (последний отличается высокой урожайностью в условиях орошения, иммунностью к бурой ржавчине и мучнистой росе, устойчивостью к полеганию, высокими мукомольными и хлебопекарными качествами). Лучшие яровые сорта - Ред Ривер 68, Вердл Сидз 1502, Вердл Сидз 1877 (районирован в СССР в 1975). Американские селекционеры работают над созданием кормовой многолетней пшеницы, которая характеризовалась бы высокой кустистостью, солевыносливостью, устойчивостью к болезням и значительным содержанием белка, а также гибридной пшеницы. В селекции риса большое внимание уделяется выведению скороспелых и среднеспелых высокобелковых сортов, устойчивых к низкой температуре воды, а также двухурожайных сортов

В Канаде большое внимание уделяется селекции зерновых культур. Основные направления селекции пшеницы: выведение короткостебельных сортов, устойчивых к ржавчине, с зерном высокого качества - крупным, с повышенным содержанием белка и каротина, хорошими технологическими свойствами, морозостойких для озимой пшеницы. В гибридизации используют сорта из Мексики, США, СССР (Ульяновку Алабасскую, Безостую 1), Индии и других стран. Проводится селекционная работа с овсом - выведены короткостебельные высоколизиновые сорта, обладающие комплексной устойчивостью к ржавчине, мучнистой росе, головне и др. болезням, с повышенным содержанием белка и масла, с ячменём- короткостебельные сорта, неполегающие, иммунные к ржавчине, пригодные для пивоварения. Хорошие результаты наблюдаются в селекции корневищных форм люцерны, сои, подсолнечника и других культур.

В Швеции селекцией растений занимаются Свалёвский и Вейбульсхольмский институты и их филиалы. При выведении сортов зерновых культур - ячменя и овса - особое внимание обращается на устойчивость к полеганию, осыпанию и прорастанию зерна на корню, иммунность к мучнистой росе, ржавчине и др. болезням, повышенное содержание белка и лизина в зерне.

Селекция

Слово "селекция" произошло от лат. "selectio",что в переводе обозначает "выбор, отбор". Селекция (от лат. selectio-выбор, отбор) - это наука о методах создания новых сортов растений и пород животных. По Н. И. Вавилову, селекция - это эволюция, направляемая волей человека. Для успешной селекционной работы учитывают: 1) исходное сортовое и видовое разнообразие растений и животных - объектов селекционной работы, 2) мутации и роль среды в проявлении и развитии изучаемых признаков, 3) закономерности наследования при гибридизации, 4) формы искусственного отбора (массовый и индивидуальный).

Направления и методы селекции. В селекции растений выделилось нескольких направлений: - селекция на урожайность, которая является главным критерием сорта, продолжает оставаться основным направлением селекции;

Селекция на качество: высокое содержание желаемых веществ (крахмала в картофеле, белка в пшенице, кормовом ячмене, кукурузе, масла в семенах подсолнечника, сои, рапса, сахара в сахарной свёкле и т. п.); более низкое содержание нежелательных соединений (алкалоидов в люпине, белка в пивоваренном ячмене, азотистых веществ в сахарной свёкле); хорошую пригодность для переработки (высокие мукомольные и хлебопекарные качества у пшеницы, пригодность для консервирования плодов и овощей, разваримость зерна крупяных культур); лёжкость плодов, овощей, картофеля, кормовых корнеплодов и т. п.;

Селекция на содержание в белке зерновых культур незаменимых аминокислот (лизина, триптофана), на химический состав масла, на длину волокна.

Селекция на устойчивость к болезням и вредителям и их комплексу, на холодостойкость, зимостойкость, морозостойкость, засухоустойчивость, приспособленность к орошаемым условиям, высоким дозам удобрений, машинной уборке и др.

Сочетание различных направлений в селекции обеспечивает создание сортов с комплексом свойств и признаков, обладающих высокой урожайностью и приспособленных к определённым почвенным, климатическим и хозяйственным условиям,

В животноводстве ведётся селекция на продуктивность и качество продукции (жирномолочность, белковость и аминокислотный состав молока, длину и тонину шерсти, крупность яиц), плодовитость (особенно в овцеводстве и свиноводстве), окраску шкурок, приспособленность к местным условиям и др.

Основные методы, применяемые в селекции: отбор, гибридизация с использованием гетерозиса и цитоплазматической мужской стерильности, полиплоидия и мутагенез.

Отбор (массовый и индивидуальный) составляет сущность селекционной работы и ведётся по комплексу свойств и признаков.

Отбор в растениеводстве, выделение лучших по заранее определённым хозяйственным признакам растений и лучшего семенного материала для последующего размножения. Отбор - один из основных методов выведения сортов с.-х. растений. Его обычно ведут по комплексу признаков: урожайности, устойчивости к болезням и вредителям и др. В практической селекции растений в СССР применяли 2 основных вида отбора: массовый и индивидуальный.