Влияние примесей. Влияние постоянных примесей на свойства сталей Влияние примесей на качество стали

Курсовая работа

Тема: «Влияние вредных веществ в воздухе рабочей зоны на организм человека»

Введение

1. Классификация вредных веществ и пути их поступления в организм человека

1.2Связь причинно-следственных показателей и факторов влияния на состояние здоровья работника.

1.3 Пыль и её влияние на организм человека

1.3 Вредные вещества химической природы

1.5Влияние на организм человека метеорологических условий

2. Методы защиты от воздействия вредных и опасных факторов воздушной среды

Заключение

Список литературы

ВВЕДЕНИЕ

К опасным физическим факторам относятся: движущиеся машины и меха­низмы; различные подъемно-транспортные устройства и перемещаемые грузы; незащищенные подвижные элементы производственного оборудования (приводные и передаточные механизмы, режущие инструменты, вращающиеся и перемещающиеся приспособления и др.); отлетающие частицы обрабатываемого материала и инструмента, электрический ток, повышенная температура поверхностей оборудования и обрабатываемых материалов и т.д.

Вредными для здоровья физическими факторами являются: повышенная или пониженная температура воздуха рабочей зоны; высокие влажность и скорость движения воздуха; повышенные уровни шума, вибрации, ультразвука и различных излучений - тепловых, ионизирующих, электромагнитных, инфракрасных и др. К вредным физическим факторам относятся также запыленность и загазованность воздуха рабочей зоны; недостаточная освещенность рабочих мест, проходов и проездов; повышенная яркость света и пульсация светового потока.

Химические опасные и вредные производственные факторы по характеру действия на организм человека подразделяются на следующие подгруппы: общетоксические, раздражающие, сенсибилизирующие (вызывающие аллергические заболевания), канцерогенные (вызывающие развитие опухолей), мутогенные (действующие на половые клетки организма). В эту группу входят многочисленные пары и газы: пары бензола и толуола, окись углерода, сернистый ангидрид, окислы азота, аэрозоли свинца и др., токсичные пыли, образующиеся, например, при обработке резанием бериллия, свинцовистых бронз и латуней и некоторых пластмасс с вредными наполнителями. К этой группе относятся агрессивные жидкости (кислоты, щелочи), которые могут причинить химические ожоги кожного покрова при соприкосновении с ними.

К биологическим опасным и вредным производственным факторам относятся микроорганизмы (бактерии, вирусы и др.) и макроорганизмы (растения и животные), воздействие которых на работающих вызывает травмы или заболевания.

К психофизиологическим опасным и вредным производственным факторам относятся физические перегрузки (статические и динамические) и нервно-психические перегрузки (умственное перенапряжение, перенапряжение анализаторов слуха, зрения и др.).

Между вредными и опасными производственными факторами наблюдается определенная взаимосвязь. Во многих случаях наличие вредных факторов способствует проявлению травмоопасных факторов. Например, чрезмерная влажность в производственном помещении и наличие токопроводящей пыли

(вредные факторы) повышают опасность поражения человека электрическим током (опасный фактор).

Уровни воздействия на работающих вредных производственных факторов нормированы предельно-допустимыми уровнями, значения которых указаны в соответствующих стандартах системы стандартов безопасности труда и санитарно-гигиенических правилах.

Предельно допустимое значение вредного производственного фактора - это предельное значение величины вредного производственного фактора, воздействие которого при ежедневной регламентированной продолжительности в течение всего трудового стажа не приводит к снижению работоспособности и заболеванию как в период трудовой деятельности, так и к заболеванию в последующий период жизни, а также не оказывает неблагоприятного влияния на здоровье потомства.

1 Классификация вредных веществ и пути их поступления в организм человека

На человека в процессе его трудовой деятельности могут воздействовать опасные (вызывающие травмы) и вредные (вызывающие заболевания) производственные факторы. Опасные и вредные производственные факторы подразделяются на четыре группы: физические, химические, биологические и психофизиологические.

К опасным физическим факторам относятся: движущиеся машины и механизмы; различные подъемно-транспортные устройства и перемещаемые грузы; незащищенные подвижные элементы производственного оборудования; отлетающие частицы обрабатываемого материала и инструмента, электрический ток, повышенная температура поверхностей оборудования и обрабатываемых материалов и т.д.

К химическим опасным факторам относятся: общетоксические, раздражающие, сенсибилизирующие (вызывающие аллергические заболевания), канцерогенные (вызывающие развитие опухолей), мутагенные (действующие на половые клетки организма). В эту группу входят пары и газы: пары бензола и толуола, окись углерода, сернистый ангидрид, окислы азота, аэрозоли свинца и др., токсичные пыли. Сюда же относятся агрессивные жидкости (кислоты и т.д.), вызывающие ожог.

К биологическим опасным факторам относятся микроорганизмы (бактерии, вирусы и др.) и макроорганизмы (растения и животные), воздействие которых на работающих вызывает травмы или заболевания.

Вредными производственными факторами для здоровья человека являются повышенная или пониженная температура воздуха рабочей зоны; высокие влажность и скорость движения воздуха; повышенные уровни шума, вибраций. К вредным производственным факторам относятся также запыленность и загазованность воздуха рабочей зоны; недостаточная освещенность рабочих мест, проходов и проездов; повышенная яркость света и пульсация светового потока.

Основными источниками загрязнения воздуха производственных помещений вредными веществами могут являться сырье, компоненты и готовая продукция. Заболевания, возникающие при воздействии этих веществ, называют профессиональными отравлениями (интоксикациями).

По ГОСТ 12.1.005-88 все вредные вещества по степени воздействия на организм человека подразделяются на следующие классы: I - чрезвычайно опасные, 2 - высокоопасные, 3 - умеренно опасные, 4 - малоопасные. Опасность устанавливается в зависимости от величины ПДК, средней смертельной дозы и зоны острого или хронического действия.

Существуют различные классификации вредных веществ, в основу которых положено их действие на человеческий организм.

Общетоксические вещества вызывают отравление всего организма. Это оксид углерода, свинец, ртуть, мышьяк и его соединения, бензол и др.

Раздражающие вещества вызывают раздражение дыхательного тракта и слизистых оболочек человеческого организма. К этим веществам относятся: хлор, аммиак, пары ацетона, оксиды азота, озон и ряд других веществ.

Сенсибилизирующие вещества действуют как аллергены, т.е. приводят к возникновению аллергии у человека. Этим свойством обладают формальдегид, различные нитросоединения, никотинамид, гексахлоран и др.

Воздействие канцерогенных веществ на организм человека приводит к возникновению и развитию злокачественных опухолей (раковых заболеваний). Канцерогенными являются оксиды хрома, 3,4-бензпирен, бериллий и его соединения, асбест и др.

Мутагенные вещества при воздействии на организм вызывают изменение наследственной информации. Это радиоактивные вещества, марганец, свинец и т.д.

Среди веществ, влияющих на репродуктивную функцию человеческого организма, следует в первую очередь назвать ртуть, свинец, стирол, марганец, ряд радиоактивных веществ и др.

1 .2 Связь причинно-следственных показателей и факторов влияния на состояние здоровья работника.

Влияние производственных факторов не ограничивается лишь их ролью как причины профессиональных или производственное обусловленных заболеваний. Выявлено, что лица, которые контактируют с токсичными веществами, часто болеют общими болезнями (гриппом, воспалениями верхних дыхательных путей и легких, разладами органов пищеварение), что эти заболевания проходят в них более тяжелое, процесс выздоровления идет медленно, часто случаются рецедиви хронических заболеваний, у этих лиц медленно заживляются послеоперационные раны и часто регистрируются обострение болезни. По данным медосмотров, люди, которые работают с химическими веществами, независимо от их происхождения, выдвигают жалобы на усталость, раздражительность, бессонница, придавленное расположение духа, волнение, отсутствие аппетита, боли в суставах, мышцах. Они плохо переносят как Жару, так и холод, их бесит шум и поведение окружения, хотя к работе с ними они на это не реагировали.

Действие ряда факторов производственной среды может привести к повреждениям - нарушение анатомической целостности или функции организма человека, вызвать дискомфортные или экстремальные условия в трудовой деятельности работников.

Конкретные условия деятельности существенным образом влияют на психические и жизненно важные функции организма человека. Если влияние факторов (с учетом их взаимодействия) в конкретных условиях деятельности такому, при котором обеспечивается нормальное осуществление психических и жизненно важных функций организма, не возникает высокого напряжения компенсаторных систем организма и удачно выполняется заданная трудовая деятельность, то такие условия могут быть определенных как благоприятные, а в наилучших случаях, как оптимальные. Если в силу этих факторов возникает высокое напряжение компенсаторных систем организма, то такие условия определяются как неблагоприятные, или дискомфортные, а при выраженном неблагоприятном эффекте, как экстремальные. При проектировании рабочих мест сложных систем, которые предназначенные, как правило, для работы в особых условиях, предельно переносимы величины факторов служит основой для расчета средств и методов защиты и спасание в аварийных ситуациях.

Пребывание работника в экстремальных условиях для выполнения необходимой деятельности предполагается при проектировании объектов на основе учета возможных предельно допустимых величин факторов. При этом продолжительность пребывания определяется особенностями вредного действия факторов на состояние здоровья человека, возможностями использования защитных средств и их эффективностью, сложностью деятельности и т.д.

Однако человек может быть связан с необходимостью осуществления деятельности в экстремальных условиях не только эпизодически (аварии, неполадки, особенности технологического процесса), но и постоянно, в силу специфики профессии. Факторы экстремальных условий, кроме непосредственного отрицательного влияния на организм человека, могут вызвать повышенное психическое напряжение, которое связанное с чувством страха, переживанием опасности и т.д.

Механизм действия на работника температурного фактора среды. Влияние температурного фактора окружающей среды на человека обусловлен наличием функциональных систем терморегуляции и изготовлением тепловой энергии в организме, постоянным тепловым обменом организма с окружающей средой, целенаправленным использованием человеком в своей повседневной жизни и деятельности средств регуляции теплообмена. Температура внутренней среды человека, как известно, поддерживается на равному близко 37°С. Суточные колебания температуры, как правило, не превышают 0,5°С. Отклонение температуры тела человека за границы низшее 25 и высшее 43"С несовместимые с жизнью. При температуре высшее 43°С начинается денатурация белка. При температуре низшее 25°С интенсивность обменных процессов, прежде всего в нервных клетках, снижается к низкому уровню. Сохранение и дальнейшее восстановление жизненно важных функций при более низких температурах тела возможное лишь с помощью специальных мероприятий.

Тепловая энергия в организме вырабатывается в основному (на 95%) за счет протекания сложных биохимических реакций, в которых исходным сырьем являются вещества которые находятся в пищи. В комфортных условиях, при отсутствии физической погрузки, для нормального осуществления жизненно важных функций в организме человека должно вырабатываться 1700-1800 ккал на пору, или приблизительно 73 ккал/ч.. Эти так называемые основные энергозатраты организма взрослого человека средних лет. Они не могут быть низшие без нарушения нормальной жизнедеятельности организма.

Выработанное в организме тепло должно быть выделен извне. Большую часть тепловой энергии человек тратит при осуществлении трудовой деятельности. Работа, при которой энергозатраты организма составляют не большее 2500 ккал оценивается как легкая. Работа с энергозатратами организма близко 5000 ккал на пору является очень трудной. Для нормальной теплопродукции организм человека должен быть обеспечен и пищей, калорийность которой в суточном рационе приблизительно на 20% перекрывает затраты организма.

Комфорт температурных условий оценивается здоровым человеком в зависимости от условий микроклимата (температура окружающей среды, интенсивность тепловой и холодной радиации, влажность, скорость движения и давления воздух) и интенсивности работы. Кроме того, ощущение тепловой комфортности существенным образом зависит от климатических условий, свойств одежды человека и его физиологии.

Экстремальные по тепловому режиму условия приводят, если не принимаются защитные мероприятия, к перегреванию или переохлаждения организма.

При тепловом влиянии большой интенсивности возникают болевые ощущения, ухудшается общее самочувствие, снижается трудоспособность вообще. При тепловом повреждении кожаного покрова - ожога, в зависимости от его тяжести могут проявляться разносторонние разлады в деятельности жизненно-важных функциональных систем организма, даже к шоку и смерти.

Общее продолжительное перегревание приводит на фоне возрастающего спада трудоспособности к трудности при выполнении физического и умственного труда При этом замедляются внимание, координация уверенных движений, процесс обдумывания ситуации и принятие решение, увеличивается время сенсомоторных реакций.

Возникают болезненные симптомы одышки, перебои в работе сердца, шум в ушах, умопомрачение. Без принятия мероприятий защиты происходит не только срыв деятельности, но и серьезный разлад здоровья с потерей сознания и нарушением функций жизненно важных систем организма (так называемый "тепловой удар"). Общий разлад деятельности и здоровье человека происходит и в результате так называемого "солнечного удара", что возникает при влиянии прямых солнечных лучей на незащищенную главу человека. Это связан с свойством инфракрасного солнечного излучения проникать у ткани главного мозга, вызывает эффект перегревания.

Местное действие холода может разносторонне влиять на организм человека, в зависимости от продолжительности охлаждения и глубины охвата тканей той или другой части тела.

Глубокое местное переохлаждение может закончиться обморожением частей тела с нарушениями тканей, включая костную.

Общее влияние холода, в зависимости от его силы и продолжительность, может вызвать переохлаждение организма, которое сначала проявляется в вялости, потом возникает чувства усталости, апатия, начинается озноб и дремотное состояние. Если не употребляются защитные мероприятия человек впадает в глубокий, подобный наркотическому сон, с следующим угнетением дыхательной и сердечной деятельности и прогрессирующим снижением внутренней температуры тела. Как показывает медицинская практика, если внутренняя температура тела снизилась низшее 20(С, то восстановление жизненных функций почти невозможное.

При катастрофах на море переохлаждения становиться непосредственной причиной гибели значительной части пострадавших. Время, на протяжении которого человек сохраняет сознание и возможность двигаться при температуре воды близко 5(С, редко превышает 30 минут.

Мероприятия защиты от переохлаждения в производственных условиях предусматривают создание защитных сооружений от ветра на открытых площадках, обогревание производственных помещений, конструирование рабочей одежды с достаточным тепловым сопротивлением. Большое значение имеет также адаптация человека к пребыванию в условиях низких температур.

Экстремальные условия могут возникать за счет снижения или значительного увеличения содержимого кисня и (или) повышение содержимого углекислого газа в воздухе

Содержимое кислорода низшее 15% при нормальном атмосферном давлении не может обеспечить жизни даже при максимуме деятельности дыхательной системы. Но и 100% содержимое кислорода при нормальном давлении также выступает как экстремальный фактор.

Особую группу заключают экстремальные условия, которые получаются за счет действия вредных газовых примесей воздух. Это могут быть загрязнение компонентами тех веществ, которые используются или возникают в технологическом процессе, входят в состав жег и оборудование. Такими являются пары технических жидкостей, горюче-смазочных веществ, топлива, аккумуляторные газы, угарный газ, озон и др. (то есть продукты сгорания и электризаци); аммиак, сероводород, др. (продукты, которые выделяются при биохимических реакциях); вещества, которые выделяются из некоторых синтетических материалов, которые используются в машиностроении, строительстве и др.

Действие вредных газовых примесей на организм человека может привести к трудных соматичних повреждениям, и к психическим разладам, которые зависит от отравляющего агента. Могут властвовать и депрессия, и эйфория, и агрессивность, и т.д. Часто появляются боли в разных органах, сильная головная боль, сложности в восприятии и мышлении.

Выраженное отравляющее действие многих примесей происходит при очень маленьком содержимом их в воздухе, которым дышит человек.

Экстремальные условия, которые связанные с действием звука, света и других факторов. Акустическая среда есть важным компонентом в общей среде бытия: человек существует в мире звуков. Параметры акустической среды могут существенным образом определять и общее состояние человека, и его трудоспособность, и успешность, деятельности, в особенности тогда, если необходимо работать с звуковыми сигналами, воссоздавать язык другого человека.

Экстремальные условия в акустической среде создаются в основном при приближении звукового давления к болевого порогу, или при таких уровнях шума, которые усложняют восприятие звуковых сигналов. Болевой порог звукового давления составляет приблизительно 130 дб. Одна уже при 100 дб шум вызовет общую усталость, снижает трудоспособность и качество работы, а при 110-120 дб действует гнетюче. При равные шума 110 дб невозможное непосредственное общение.

В проектировании рабочих мест необходимо исходить из того, что недопустимый уровень шума достигает высшее 80 дб и он нуждается в использование средств индивидуальной защиты работников.

Защитные мероприятия предусматривают создание звукоизоляции производственных помещений, использование звукопоглощающих материалов и индивидуальных средств защиты (заглушки для ушей, наушники и т.п.).

Экстремальные условия, которые возникают за счет факторов освещенности в производственных помещениях, связанные с функциями зрения.

При оценке светового влияния учитывается прежде всего сила светлая, что измеряется в канделах (кд); световой поток (лм); яркость (кд/м2); освещенность (лк).

Низкое освещение усложняет распознавание деталей, снижает способность распознавания цветов. Работа в таких условиях приводит к развитию усталости, появления ошибок. В производственных помещениях уровни общей освещенности должны быть в границах от 100 до 500 лк и высшее (в зависимости от характера работы). Если же человек работает с светящимися сигналами маленькой яркости, то равные освещенности должны быть снижены в и 0-2 0 раз.

Недостаточность ультрафиолетового излучения вызовет кт так называемого "светового голодания". Ультрафиолетовая недостаточность у взрослых людей проявляется в снижении трудоспособности и болезням, у детей она может быть причиной развития рахита. Профилактики ультрафиолетовой недостаточности предусматривают специальные процедуры ультрафиолетового облучения или введения ультрафиолетового компонента в световой поток, который формируется в помещениях разными источниками освещения.

Излишек ультрафиолетового облучения может также привести к трудным разладам здоровья и трудоспособность у работников. В производственных условиях избыточное ультрафиолетовое облучение возникает при дуговой электросварке, при работе ртутно-кварцевих и электроплавильных печей.

Ультрафиолетовое поражение организма может проявляться симптомами общей интоксикации, или местного поражения. Симптомы общей интоксикации обусловленные денатурацией белка, чрезмерным образованием активных веществ. К числу таких обменных симптомов можно отнести повышенную утомляемость с явлениями возбуждения и раздраженностью, головная боль, плохое самочувствие.

Симптомы местного повреждения возникают в кожаных покровах и в органе зрения. Чрезмерное ультрафиолетовое облучение кожаных покровов вызывает дерматит, болевыми ощущениями, изжогой, зудом. Все это может существенно усложнить выполнение работы или привести к срыву ее выполнения.

При поражении глаз наблюдаются интенсивное слезотечение, режущая боль в глазах, ощущение постороннего тела, снижение четкости зрения и светобоязнь. Эти явления начинаются не более чем через 4-5 часов после облучения, и могут привести к полному срыву деятельности зрения.

В естественных условиях поражения кожаных покровов ультрафиолетовыми лучами чаще всего наблюдается при нарушении режима облучение солнцем. Большая вероятность поражения глаз существует в условиях высокогорья.

Мероприятия защиты от влияния ультрафиолетового облучения сводятся к использованию очков, защитных масок, использованию рабочей одежды. Развитие радиолокации, радиосвязи, термической обработки металлов и т. д.

В ряде случаев экстремальные условия связаны с влиянием радиоактивного излучения.

1.3 Пыль и её влияние на организм человека

Пыль является наиболее распространенным неблагоприятным фактором производственной среды. Многие технологические процессы и операции в промышленности, на транспорте, в сельском хозяйстве сопровождаются выделением пыли, ее воздействию могут подвергаться большие контингенты работающих. Это характерно для горнодобывающей промышленности, машиностроения, металлургии, промышленности строительных материалов, текстильной промышленности, агропромышленного комплекса и др.

При шлифовании и полировании поверхностей выделяются тонкодисперсные пыли, а при деревообработке – большое количество опилок, стружки и древесной пыли, выделяется пыль при производстве сварочных работ, газовой и плазменной резке металла и т.д. Пыль, образующаяся в процессе абразивной обработки на (30–40)% состоит из материалов абразивного круга, но (60–70)% - из обрабатываемого материала.

Производственная пыль не только отрицательно воздействует на организм человека, но иногда и ухудшает производственную обстановку (видимость, ориентирование) в пределах рабочей зоны и одновременно приводит к быстрому разрушению трущихся частей машины. Кроме того, пыль может быть взрывоопасной, являться источником статических зарядов электричества, а также может быть переносчиком микробов.

Поражающее действие пыли на организм человека во многом определяется ее физико-химическими свойствами, токсичностью, дисперсностью, т.е. размером частиц пыли, а также концентрацией в воздухе рабочей зоны. Степень опасности пыли зависит также от формы ее частиц, их твердости, волокнистости, электрозаряженности, удельной поверхности и др. свойств.

Пыль подразделяется на органическую, неорганическую и смешанную. К органической относится пыль животного и растительного происхождения, например, хлопчатобумажная, древесная. К неорганической относится минеральная пыль, например, цементная, кварцевая, асбестовая, а также металлическая. Пыль по степени ее измельчения (дисперсности) делят на две группы: видимую, с размером частиц более 10 мкм и микроскопическую, менее 10 мкм.

Пылевидные частицы находятся в непрерывном движении в среде, в которой они взвешены. Скорость осаждения пыли из воздуха находится в зависимости от размера частиц. Крупные частицы относительно быстро осаждаются под действием силы тяжести. Более мелкие частицы пыли, преодолевая сопротивление воздушной среды, падают с меньшими скоростями, а самые мелкие, высокодисперсные частицы могут длительное время перемещаться в воздухе. Последнее обстоятельство объясняется большим отношением общей поверхности пылинок к их объему и массе.

Частицы пыли заряжаются электричеством, величина их заряда определяется химическим составом вещества. Неметаллическая пыль заряжается положительно, а металлическая – отрицательно. Разноименно заряженные частицы притягиваются друг к другу, слипаются, коагулируют, увеличиваются в размерах и оседают быстрее других частиц. При одноименных зарядах происходит отталкивание частиц, и их коагуляция затрудняется.

Характер и эффективность действия пыли зависит от ее заряда. Известно, что заряженные частицы дольше задерживаются в легких, чем нейтральные, поэтому при прочих равных условиях они более опасны для организма. Вредность воздействия пыли также связана с растворимостью, твердостью, формой пылинок.

По вредности пыли могут быть инертными и агрессивными. Инертная пыль (сажа, сахарная пыль и др.) состоит из веществ, не оказывающих токсического воздействия на организм человека. Агрессивная пыль (пыли свинца, мышьяка и др.) обладают токсическими свойствами. Работа в запыленной среде с течением времени может привести к профессиональным заболеваниям. Твердые пылинки с острыми краями могут вызвать травмы глаз и т.д.

Пыль может оказывать на организм человека фиброгенное, раздражающее и токсическое действие.

Фиброгенным называется такое действие пыли, при котором в легких происходит разрастание соединительной ткани, которое приводит к нарушению нормального строения и функции органа.

Пыль некоторых веществ и материалов (стекловолокно, слюда и др.) оказывает раздражающее действие на верхние дыхательные пути, слизистые оболочки глаз, кожу.

Токсическое действие оказывает пыль токсических веществ (свинец, хром, бериллий и др.), которая попадает в организм человека через легкие.

Вредность пыли обусловлена ее способностью вызывать профессиональные заболевания. Наиболее тяжелые заболевания возникают при попадании пыли в легкие. Эти виды заболеваной носят общее название пневмокониозов (по гречески «пневмо» - легкие, «конис» - пыль). Они имеют много разновидностей (металлокониоз, зерновой пневмокониоз, асбестоз, талькоз, цементоз, каолиноз и др.).

Под влиянием пыли развиваются конъюктивиты, поражения кожи и др.

Вредное воздействие пыли усугубляет тяжелый физический труд, неблагоприятные метеорологические условия, некоторые газы.

Решающее влияние на степень поражения организма человека вредными химическими веществами и пылью имеет концентрация их в воздухе рабочей зоны и продолжительность воздействия. В производственных условиях работающие зачастую подвергаются одновременному воздействию нескольких вредных веществ. При этом, возможно суммирование их воздействия, независимое вредное действие каждого из них или уменьшение этого воздействия за счет взаимной нейтрализации вредных веществ.

Определенное значение имеют также индивидуальные особенности человека. Известно, что при работе в одних и тех же условиях некоторые люди заболевают чаще других.

Методы защиты работающих от вредных химических производственных факторов (пыли) также разнообразны.

На предприятиях, производственная деятельность которых связана с вредными веществами (пылью), должны быть:

разработаны нормативно-технические документы по безопасности труда при производстве, применении и хранении вредных веществ;

выполнены комплексы организационно-технических, санитарно-гигиенических и медико-биологических мероприятий.

Решающим направлением в этой работе является применение прогрессивных технологий производства, исключающих контакт человека с вредными веществами и пылью (замкнутые циклы, автоматизация, комплексная механизация, дистанционное управление, непрерывность процессов производства, автоматический контроль процессов и операций и др.).

Большое значение имеет разработка технологических процессов, исключающих использование вредных веществ, предусматривающих замену вредных веществ менее вредными. Например, свинцовые белила заменены цинковыми; наиболее опасные растворитель – бензол заменяется менее вредными растворителями – фторорганическими соединениями группы метана и этана; метиловый спирт в производстве жирных кислот заменен бутиловым; вместо органических растворителей для обезжиривания деталей и оборудования используются водные моющие растворы и т.п.

Уменьшению пылевыделения способствует замена сухих способов переработки пылящих материалов мокрыми, выпуск конечных продуктов в непылящих формах, применение при упаковке и затаривании сыпучих материалов герметических вентилируемых укрытий с вмонтированными рукавами с перчатками.

Снижению поступлению в воздух рабочей зоны вредных веществ (пыли) способствует правильный выбор соответствующего оборудования и коммуникаций, не допускающих выделения вредных веществ в воздух рабочей зоны в количествах, превышающих предельно допустимые концентрации при нормальном ведении технологического процесса, а также герметизация оборудования. Применение замкнутых технологических циклов, непрерывных технологических процессов, исключающих разгерметизацию оборудования и коммуникаций, ведение процессов в вакууме и др. также снижают выделение вредных веществ в воздух рабочей зоны.

Хороший эффект достигается при рациональной планировке промышленных площадок, зданий и помещений, размещении производственного оборудования в специальных кабинах с устройством соответствующей вентиляции и выносом приборов управления и контроля в коридоры.

Определенное значение имеет и внутренняя отделка производственных помещений, т.к. установлена заметная роль в загрязнении воздуха помещений процессов десорбции химических веществ, адсорбированных строительными и отделочными материалами.

Важное значение имеет применение специальных систем по улавливанию и утилизации абгазов, рекуперации вредных веществ и очистки от них технологических выбросов, нейтрализация отходов производства, промывных и сточных вод. Обеспечение чистоты воздуха, подаваемого приточной вентиляцией в производственные помещения, достигается также озеленения территории предприятия.

Большое значение в комплексе профилактических мероприятий имеют специальная подготовка и инструктаж обслуживаемого персонала, проведение предварительных и периодических медицинских осмотров лиц, имеющих контакт с вредными веществами, соблюдение ими правил личной гигиены, а также лечебно-профилактическое питание.

Применение средств индивидуальной защиты органов дыхания, глаз, спецодежды, спецобуви, средств защиты рук, а также защитных паст и мазей способствует защите работающего от вредных веществ и пыли.

1.4 Вредные вещества химической природы

Пары, газы, жидкости, аэрозоли, химические соединения, смеси при контакте с организмом человека могут вызывать изменения в состоянии здоровья или заболевания. Воздействие вредных веществ на человека может сопровождаться отравлениями и травмами.

В настоящее время известно более 7 млн. химических веществ и соединений, из которых в современном производстве находят применение около 60 тысяч, большинство их синтезировано человеком и не встречаются в природе.

К химически опасным и вредным производственным факторам относятся:

· токсичные и ядовитые газы;

· токсичные и ядовитые жидкости.

К химически негативным факторам производственной среды относятся:

Загазованность рабочей зоны, источниками которой являются утечки токсичных и вредных газов из негерметичного оборудования и емкостей, испарения из открытых емкостей при проливах, выбросы вредных газов при разгерметизации оборудования, выделение вредных газов при обработке материалов, окраска распылением, сушка окрашенных поверхностей, ванны гальванической обработки и др.

Запыленность рабочей зоны, источниками которой является обработка материалов абразивным инструментом (заточка, шлифование и т.д.), сварка, газовая и плазменная резка, переработка сыпучих материалов, участки выбивки и очистки отливок, обработки хрупких материалов, пайка свинцовыми припоями, пайка бериллия с припоями, содержащими бериллий, участки дробления и разлома материалов, пневмотранспорт сыпучих материалов и т.д.

Попадание ядов на кожные покровы и слизистые оболочки, источниками которых являются заполнение емкостей, распыление жидкостей, опрыскивание, окраска, гальваническое производство, травление.

Попадание ядов в желудочно-кишечный тракт человека, источниками являются ошибки при использовании ядовитых жидкостей.

Изучение потенциальной опасности вредного воздействия химических веществ на живые организмы является предметом химикобиологической науки - токсикологии. Токсикология изучает механизмы токсического действия химических веществ, диагностику, профилактику и лечение отравлений. Вредное вещество, т.е. химический элемент или соединение, вызывающее заболевание организма, является центральным понятием токсикологии. Область токсикологии, изучающая действие на человека вредных веществ называют промышленной токсикологией.

В промышленности вредные вещества находятся в газообразном, жидком и твердом состояниях. Они способны проникать в организм человека через органы дыхания, пищеварения или кожу. Вредное действие химических веществ определяется как свойствами самого вещества (химическая структура, физико-химические свойства, количество попавшего в организм - доза или концентрация - сочетание вредных веществ, находящихся в организме), так и особенностями организма человека (индивидуальная чувствительность к химическому веществу, общее состояние здоровья, возраст, условия труда).

По степени действия на организм человека вредные вещества подразделяются на четыре класса опасности:

Чрезвычайно опасные: ПДК 10,0 мг/м3.

В основу данной классификации положена средняя смертельная концентрация (ССК) предельно допустимая концентрация (ПДК).

ПДК вредных веществ – это концентрации, которые при ежедневной работе в течение восьми часов или другой продолжительности, но не более 41 часа в неделю, в течение всего рабочего стажа не могут вызвать заболевание или отклонения в состоянии здоровья обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящих и последующих поколений.

Сернистый ангидриды (SO2) - бесцветный газ с острым запахом и сладковатым привкусом, не горит и не поддерживает горения. Встречается при обжиге и плавке сернистых руд, на медеплавильных заводах, в производстве серной кислоты; используется как отбеливающее средство в текстильной и консервирующее - в пищевой промышленности.

Он хорошо растворяется в воде, спирте, уксусной и серной кислотах, хлороформе и эфире.

Сернистый ангидрид раздражает дыхательные пути, вызывает омертвение роговицы глаз. Раздражение сопровождается сухим кашлем, жжением и болью в горле и груди, слезотечением, а при более сильном воздействии- рвотой, одышкой, потерей сознания. Смерть может наступить от удушья и при внезапной остановке кровообращения в легких.

Первая помощь: свежий воздух, обеспечить ингаляцию кислородом, промывание глаз, носа, полоскание 2% раствором соды; тепло на область шеи, горчичники, теплое молоко с боржоми, содой, маслом и медом.

Защита: пром. противогазы марки "В" и "М", гражданские, детские и изолирующие противогазы.

Органическая сера превращается в SO2 и H3S под действием анаэробных и аэробных гетеротрофных микроорганизмов.SO2, выделяющийся в атмосферу при сжигании горных ископаемых, особенно угля, самый опасный компонент промышленных выбросов, SO2 образуется при взаимодействии геохимических и метеорологических процессов (эрозия, осадкообразование, выщелачивание, дождь, абсорбция) с биологическими процессами.SO4 2- - аналогично нитрату и фосфату восстанавливается автотрофами и включается в белки (входит в ряд аминокислот).Экосистеме не требуется столько же серы, сколько азота и фосфора, поэтому сера не является фактором, лимитирующим рост растений и животных. В осадках сульфиды железа, фосфора из нерастворимой формы переводятся в растворимые. Один круговорот регулируется другим. Несмотря на то, что в круговороте серы протекают как окислительные, так и восстановительные процессы, часть серы выводится из кругооборота, восстановление не компенсирует окисление. Это усугубляется и сознательной деятельностью человека, который переводит природные сульфиды в сульфаты, например, при производстве серной кислоты, выплавке металлов из сернистых руд. Соединения серы, поступившие техногенным путем в атмосферу с суши, почти целиком возвращаются на земную поверхность и пагубно воздействуют на природные комплексы.

В результате сгорания дизельного топлива образуется ряд продуктов сгорания. Их состав зависит от конструкции двигателя, системы подачи топлива, мощности и рабочей нагрузки. На первом месте стоят вода (Н2О) и безвредный углекислый газ (СО2). Кроме того, в достаточно малых концентрациях образуется еще несколько веществ:

Оксид углерода (СО);

Несгоревшие углеводороды (СН);

Оксиды азота (NOx);

Диоксид серы (SO2) и серная кислота (H3SO4);

Твердые частицы сажи.

Если двигатель не перегрет, в процессе его работы образуется много не прореагировавших углеводородов из-за недостатка кислорода. Они проявляют себя в виде белого или голубоватого дыма, а альдегиды (частично окисленные углеводороды) вызывают неприятный запах.

Преимущественным путем поступление вредных веществ в организм человека в производственных условиях является поступление с вдыхаемым воздухом.

Токсичность вредных веществ определяется прежде всего концентрацией в воздухе рабочей зоны. Поэтому на содержание вредных веществ в воздухе рабочей зоны устанавливаются предельно допустимые значения - предельно допустимые концентрации (ПДКрз). Значения ПДКрз определены в нормативных документах - государственных стандартах (ГОСТ 12.1.005- 88) и государственных нормативах (ГН 2.2.5.686-98) практически для всех известных и применяемых в промышленности веществ. ПДК измеряются в мг/м3. Предельно - допустимый уровень SO2 составляет 10 мг/м3. Условием безопасности вредных веществ является соотношение: Едоп. измерены СФ и ПДК мг/м3.

При нахождении в рабочей зоне нескольких вредных веществ однонаправленного действия должно соблюдаться соотношение:

По характеру действия они подразделяются на:

Общетоксичные – вызывающие отравления всего организма (СО – угарный газ, бензол, ртуть, свинец, цианиды, арсениды – соединения мышьяка);

Раздражающие (хлор, аммиак, сернистый газ, ацетон);

Сенсибилизирующие – аллергены (формальдегид, растворители и лаки на основе нитросоединений);

Канцерогенные – вызывающие рак (никель, соединения хрома, асбест, амины и т. д.);

Мутагенные – влияющие на репродуктивную функцию (стирол, магний, ртуть).

Контроль вредных веществ.

Лабораторные методы контроля:

Применяются при необходимости отследить чрезвычайно опасные, высокоопасные вещества. Достоинства: суперточные.

Недостатки: сложность, длительность, требуется высокая подготовка персонала.

Примеры: спектральный анализ, фотометрия, колориметрия, хромотография.

Методы состоят в следующем: производится отбор проб (автоматически или вручную) в зоне выделения вредного вещества с последующей качественной и количественной идентификацией.

2. Методы защиты от воздействия вредных и опасных факторов воздушной среды

Вредные и опасные факторы на производстве возникают при отклонении от нормируемых параметров микроклимата, а также при превышении допустимых значений запыленности и загазованности воздуха. Длительное воздействие запыленности и загазованности, превышающих допустимые значения, может привести к профессиональным заболеваниям, а значительное превышение допустимых значений приводит и к острым отравлениям.

ПДК вредных веществ в воздухе рабочей зоны - концентрация, которая при ежедневной, (кроме выходных дней) работе в пределах

8 часов или другой продолжительности, но не более 40 часов в неделю в течение всего рабочего стажа, не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования, в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.

При одновременном содержании в воздухе рабочей зоны нескольких вредных веществ однонаправленного действия сумма отношений фактической их концентрации в воздухе помещений к ПДК каждого из них не должна превышать единицы.

Концентрацию газов определяют разнообразными стандартными методами, основанными на химических, диффузионных и электрических принципах.

В случаях, когда концентрация вредных примесей превышает допустимые нормы, необходимо проведение специальных мероприятий по очистке воздуха рабочей зоны. Если за счет выбора технологических процессов обеспечить соблюдение допустимых норм не удается, то используют различные системы вентиляции и кондиционирования воздуха.

Вентиляция и кондиционирование воздух на предприятиях создает воздушную среду, которая соответствует нормам гигиены труда. Различают естественную и искусственную вентиляцию.

Естественная вентиляция обеспечивает воздухообмен в помещениях в результате действия ветрового и теплового напоров, получаемых из-за разной плотности воздуха снаружи и внутри помещений. Естественная вентиляция подразделяется на организованную и неорганизованную.

Неорганизованная вентиляция осуществляется через неплотности конструкций (окон, дверей, поры стен). Она вызывается разностью температур воздуха в помещении и снаружи, а также перемещением воздуха при ветре.

Организованная естественная вентиляция осуществляется аэрацией или дефлекторами. При естественной вентиляции циркуляция воздуха происходит через вентиляционные каналы, расположенные в стенах, фонари и специальные воздухопроводы. Аэрация предусматривает бесканальный обмен воздуха через окна, форточки, фрамуги и т.п., дефлекторная вентиляция - через каналы и воздухопроводы, имеющие специальные насадки.

Искусственная вентиляция (механическая) достигается за счет работы вентиляторов или эжекторов. Она может быть приточной, вытяжной и приточно-вытяжной.

При приточной вентиляции подачу воздуха осуществляет вентиляционный агрегат, а удаление воздуха - фонари или дефлекторы. Она применяется, как правило, в помещениях, в которых наблюдается избыток тепла и малая концентрация вредных веществ. Вытяжная вентиляция производит откачку воздуха из помещений при помощи вентиляционного агрегата. Она используется для вентиляции помещений, имеющих в воздухе большую концентрацию вредных веществ, а также влаги и тепла. Приточно-вытяжная система вентиляции осуществляется с помощью отдельных вентиляционных систем, которые должны обеспечить одинаковое количество подаваемого и удаляемого из помещений воздуха. В помещениях, где постоянно выделяются вредные вещества, вытяжная вентиляция должна превышать нагнетательную примерно на 20%. В этих случаях вытяжка производится из мест скопления вредных веществ, а подача чистого воздуха - на рабочие места.

В случаях, когда средства вентиляции неэффективны или при работах, где нельзя применить вентиляционные установки, а концентрация вредных веществ превышает ПДК, используют средства индивидуальной защиты органов дыхания:

Заключение

Задачей защиты от негативных факторов является исключение или снижение до допустимых пределов попадания в организм человека вредных веществ, контакта с вредными или опасными объектами.

Поэтому задачей защиты является удаление веществ из зоны их образования; минимизация их попадания в воздух; очистку загрязненного воздуха от них перед попаданием в воздух рабочей зоны, территории предприятия, биосферу.

Для того чтобы выбрать средства и методы защиты от негативных факторов, необходимо знать их основные характеристики и действие на человека. Полностью исключить воздействие на человека негативных факторов практически невозможно, как с технической, так и с экономической точек зрения. Иногда это и нецелесообразно, так как даже в естественной природной среде человек подвергается их воздействию – в воздухе содержатся вредные вещества, выделяемые природными источниками.

В рабочей зоне необходимо обеспечить такие уровни негативных факторов, которые не вызывают ухудшения состояния здоровья человека, заболеваний. Для исключения необратимых изменений в организме человека необходимо ограничить воздействие негативных химических факторов предельно допустимыми концентрациями.

Здоровье - это не только отсутствие болезней, но и физическое, психическое и социальное благополучие. Здоровье - это капитал, данный нам не только природой от рождения, но и теми условиями, в которых мы живем и работаем.

Список литературы

1 Экология и безопасность жизнедеятельности: учеб. пособие для вузов/ Д.А.Кривошеин, Л.А.Муравей, Н.Н. Роева и др.; Под ред. Л.А.Муравья. – М.: ЮНИТИ-ДАНА, 2000. – 447с.

2 Т.А. Хван, П.А. Хван. Основы экологии. Серия "Учебники и учебные пособия". Ростов н/Д: "Феникс", 2001. – 256с.

3.Безопасность жизнедеятельности. Учебное пособие. Иванов и др., МГИУ, 2001

рабочей зоны . Остановимся только на моментах, нуждающихся в пояснении. Пункт 3.1.1. гласит: "Контроль санитарного состояния воздуха рабочей зоны ...
  • Обеспечение качества воздушной среды. Защита от вредных веществ и обеспечение параметров микроклимата

    Реферат >>

    ... вредных веществ загрязнителей воздушной среды на человека . Нормирование содержания вредных веществ в воздухе рабочей зоны и населенных мест. Методы контроля загрязнения воздуха ... тело человека Продолжительности воздействия на организм человека ...

  • Аттестация рабочих мест (6)

    Реферат >> Менеджмент

    Процесса, оказывающих¦ ¦ ¦влияние на здоровье и работоспособность¦ ¦ ¦человека в процессе труда (ГОСТ¦ ... 1987 ¦методические указания на¦ ¦ ¦ ¦методы измерения¦ ¦ ¦ ¦концентрации вредных¦ ¦ ¦ ¦веществ в воздухе¦ ¦ ¦ ¦рабочей зоны на¦ ¦ ¦ ¦предприятиях...

  • Вредное воздействие тяжелых металлов на организм человека

    Реферат >> Безопасность жизнедеятельности

    Шляп. У рабочих часто наблюдались психические... воздухе населённых мест – составляет 0,01 мг/м3) вредно влияет на организм человека ... организме человека накапливаются вредные для него вещества . Они нарушают его работу. Часто на организм оказывают влияние ...

  • Сера создает возможность образования горячих или кристаллизационных трещин в металле шва. Ее содержание в металле и сварочных материаловвседа следует жестко лимитировать. Это достигается при введение в сварочную ванну марганца. Общее снижение серы в металле при сварке возможно при сильно основных шлаках. Бескислородные фторидные флюсы способствуют удалению серы из металла в результате образования летучих фторидов металла и твердых сульфидов.Сера хорошо удаляется при электрошлаковой сварке и переплаве металлов.

    Фосфор яв-ся вредной примесью в метлах,снижающих их пластичность.Так при кристаллизации стали фософор образует ряд соединений с железом,отличающихся своей хрупкостью,кристаллы которых могут стать зародышами холодных трещин. Содержание фософра в металле шва при дуговой сварке понизить практически нельзя,т.к. он удаляется в окислительных шлаках,а сварочные шлаки-восстановительные.Концентрация фософра в шве значительно снижается при эл.шлакофой сварке

    Кислород вредная примесь в металле при сварке,снижающая пластические свойсва в металле,поэтому при всех видах сварки предусматрвается процесс раскисления металла шва до допустимой нормы.

    При кристаллизации металла сварочной ванны азот образует-нитриды различной степени устойчивости.Нитриды железа Ау4ТбАу2Т образуют хрупкие игольчатые кристаллы,разрушение которых приводит к зарождению холодных трещин.Из промышленных металлов только медь не дает устойчивых нитридов и поэтому можно сваривать в атмосфере азота.

    Водород является вредной примесью которая вызывает водородную хрупкость.

    Источники водорода при сварке металлов:

    1)водород поглощенный металлом из атмосферы дугового заряда(вызывает возникновение пор и трещин)

    2)Водород,растворенный в основном металл

    Защита сварочной ванны от воздействия окружающей среды

    Для предохранения металла сварочной ванны от воздействия воздуха создают газовую защиту, которая оттесняет воздух от расплавленного металла. В результате снижается возможность растворения кислорода и азота воздуха в жидком металле.

    Защитные газы образуются при сгорании компонентов покрытия электродов (при ручной дуговой сварке) и флюсов (при сварке под флюсом).

    При сварке в среде защитных газов зону сварки защищают от воздуха аргоном, гелием, углекислым газом, смесью газов и др.

    Защита сварочной ванны от воздействия окружающей среды:

    Шлаковая;

    Газовая;

    Газошлаковая;

    Вакуумная (применяется при сварке конструкций из титана, молибдена, ванадия и других химически активных и тугоплавких металлов)

    Шлаковая защита при дуговой сварке образуется за счет расплавления
    флюсов, электродных покрытий и сердечников порошковой проволоки. Наиболее надежна шлаковая защита при сварке под флюсом. Образование капель при плавлении электрода и их перенос происходит в объеме газового пузыря, заполненного парами металла и флюса. Взаимодействие с атмосферными газами практически исключается.
    Менее надежна шлаковая защита при сварке покрытыми электродами и порошковой проволокой. Капли электродного металла проходят через открытый дуговой промежуток и взаимодействуют с атмосферой. Наличие на каплях шлаковой пленки не всегда предохраняет их от этого взаимодействия. При сварке наряду со шлаковой защитой должна создаваться и газовая защита. В электродные покрытия и сердечники порошковой проволоки в соответствии с этим вводят шлакообразующие и газообразующие компоненты.

    Шлаковая защита.

    Шлаковая защита сварочной ванны реализуется при автоматической сварке под слоем флюса. Электрическая дуга, перемещаемая вдоль сварного шва, поддерживается в замкнутом пространстве расплавленного флюса, при этом газы дуговой атмосферы (пары металла и компонентов флюса) поддерживают давление внутри полости флюса выше, чем давление окружающей атмосферы. В результате плавления флюса и металла на поверхности сварного шва образуется шлак.

    Шлаками называются сложные вещества (в основном окислы металлов) получающиеся в результате плавления металла и флюса. Шлаки представляют собой жидкие при высокой температуре вещества, отделяющие зеркало металла от действия воздуха. Шлаки не изолируют металл от окружающей газовой среды, а только заменяют непосредственное взаимодействие газов с металлом диффузионным.

    По типу взаимодействуя с металлической ванной шлаки разделяются на окислительные и восстановительные.

    При сварке используют плавленые, гранулированные, керамические флюсы.

    Наибольшее применение получили плавленые флюсы. Плавленые флюсы по своему составу и назначению делятся на алюмосиликатные и фторидные.

    Алюмосиликатные флюсы предназначены для сварки сталей. Фторидные для сварки титана и других цветных металлов.

    Флюсы разделяются по физическим свойствам:

    По структуре зерна на стекловидные и пемзовидные;

    По характеру изменения вязкости на длинные и короткие;

    По характеру взаимодействия с металлом на активные и пассивные.

    Основными компонентами флюсов являются: окись кремния Si O 2 , окись марганца Mn O и фторид кальция Ca F 2 .

    В восстановительной зоне сварочной ванны происходят реакции, приводящие к легированию и одновременно к окислению металла сварочной ванны компонентами флюса:

    Fe + (MnO) → + (FeO).

    2 Fe + (SiO) → + 2 (FeO)

    Круглые скобки указывают, что вещество находится во флюсе, шлаке.

    Квадратные скобки указывают, что вещество находится в сварном шве.

    В этой же зоне происходит окисление углерода стали по уравнению:

    + (C) → + (CO);

    и восстановление кремния марганцем:

    2 + (SiO 2) → + 2(MnO).

    Обогащённый кремнием и марганцем металл попадает в низкотемпературную зону сварки и при понижении температуры эти компоненты начинают раскислять (восстанавливать) металл:

    + → + (MnO),

    2 → 2 + (SiO 2)

    Керамические флюсы дополнительно содержат ферросплавы и свободные металлы для дополнительного легирования и раскисления металла. Высокая раскислительная способность керамических флюсов позволяют вести сварку металла по окисленным кромкам (ржавчине) свариваемых изделий.

    Газовая защита

    В настоящее время этот процесс сварки получил очень широкое применение при изготовлении конструкций низкоуглеро-дистых, низколегированных, среднелегиро-ванных и высоколегированных сталей при высоком качестве сварных соединений. В последние годы разработаны способы газовой защиты с применением различных газовых смесей (Аг+Не, Аг+О2, Аr+СО2, СO2+О2 и др.), что расширяет сварочно-технологические и металлургические возможности данного метода сварки.

    Из инертных газов наиболее широко применяется аргон, так как он значительно дешевле, чем гелий, а также обладает лучшими защитными свойствами.

    Иногда аргонно-дуговую сварку применяют для упрочненных средне- или высоколегированных сталей.

    Аустенитные коррозионно-стойкие и жаропрочные стали (12Х18Н10Т и т. д.) хорошо свариваются в среде аргона как плавящимся, так и неплавящимся электродами.

    Сварку в среде углекислого газа осуществляют с помощью сварочной головки, перемещающей сварочный инструмент и подающей в зону сварки электродную проволоку. С помощью сопла создаётся поток углекислого газа, омывающий зону дугового разряда и оттесняющий из зоны сварки воздушную атмосферу. Сварка может вестись в автоматическом или механизированном режиме.

    При механизированной сварке инструмент (горелка, головка) перемещается рукой сварщика, а электродная проволока подается по гибкому шлангу с помощью отдельно установленного механизма.

    Плотность углекислого газа составляет 1,96 кг/м3, поэтому он хорошо оттесняет воздух, плотность которого 1,29 кг/м3. Поставляется углекислый газ в баллонах в жидком состоянии.

    Для сварки применяют газ с пониженным содержанием вредных примесей – кислорода, азота, оксида углерода, влаги. Качество сварных швов зависит не только от чистоты СО2, но и от его расхода и характера истечения из сопла под небольшим давлением, обеспечивающим спокойный (ламинарный) характер истечения.

    При сварке в струе углекислого газа металл поглощает водород в меньших количествах, чем при других видах сварки.

    Металл, наплавленный при сварке в струе СО2 чище по шлаковым включениям, и поэтому его пластические свойства несколько выше, чем при сварке под слоем флюса.

    Перегретый водяной пар является самой дешевой защитной средой, но в настоящее время не применяется, так как при этом методе металл поглощает большое количество водорода. При поглощении водорода металл резко ухудшает свои пластические свойства, но они восстанавливаются после термической обработки или при «вылеживании», так как дифузионно-подвижный водород покидает металл с течением времени.

    Газошлаковая защита

    Газошлаковая защита используется при ручной дуговой сварке толстопокрытыми или качественными электродами.

    Благодаря разработке покрытий, плавящихся вместе с металлом электрода, удалось резко повысить качество наплавленного металла и сварного соединения в целом, что обеспечило применение ручной дуговой сварки во всех отраслях промышленности и строительстве, и разработать широкий ассортимент электродов для сварки сталей различного типа и многих сплавов.

    Состав покрытия электродов определяется рядом функций, которые он должен выполнять:

    защита зоны сварки от кислорода и азота воздуха;

    раскисление металла сварочной ванны;

    легирование ее нужными компонентами;

    стабилизация дугового разряда

    Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на:

    ионизирующие,

    шлакообразующие,

    газообразующие,

    раскислители,

    легирующие,

    Некоторые компоненты могут выполнять несколько функций одновременно, например мел, который, разлагаясь, выделяет много газа (СО2), оксид кальция идет на образование шлака, а пары кальция имеют низкий потенциал ионизации и стабилизируют дуговой разряд.

    Электрический дуговой разряд возникает при касании изделия и горит между электродом и сварочной ванной.

    Электродный стержень плавится быстрее, чем покрытие и на торце электрода образуется углубление (втулка) которая направляет поток газов и капли металла в сварочную ванну.

    Капли металла проходят через дуговой промежуток уже закрытые тонким слоем шлака. Капля активно взаимодействует со шлаком и газами дугового промежутка и, попадая в ванну, освобождается от шлака, который всплывает и оттесняется давлением дуги.

    Плавящийся на торце электрода металл растворяет в себе раскислители, имеющиеся в покрытии. В кристаллизующемся металле ванны идет интенсивная диффузия между основным металлом и металлом электрода, но концентрация может значительно меняться

    Важный показатель качества металла сварных швов – образование газов и состав неметаллических включений в покрытии, влияющих на прочностные свойства сварных соединений.

    Состав металла шва образуется из основного металла, электродной проволоки и покрытия.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru

    Введение

    Материаловедение -- это наука, изучающая состав, способы получения, физические, химические и механические свойства, способы термической ихимико-термической обработки материалов, а также их назначение.

    Основы этой науки были заложены в 30-х годах XIX в., когда было составлено общее представление о строении металлов и сплавов, разработаны промышленные методы получения стали и основы термической обработки. С этого времени металловедение начинает приобретать все большее значение при решении вопросов пригодности металлов для тех или других целей, производства сплавов с определенными свойствами, придания им необходимых свойств с помощью термической и химико-термической обработки и т. д.

    Основы теории и научно обоснованной технологии термической обработки стали были заложены в работах Д. К. Чернова (1839--1921) по металлографии железа и стали, которые завоевали международное признание. Он также развил учение о кристаллизации, создал один из наиболее прогрессивных методов закалки -- изотермический, указал на преимущества кристаллизации под давлением и центробежного литья.

    Крупнейшим открытием XIX в. стал периодический закон Д. И. Менделеева (1834--1907), позволяющий установить связь между свойствами, составом и строением металлов и предсказать изменение и физико-химических и механических свойств. Дальнейшие успехи металловедения неразрывно связаны с именами советских ученых Н. А. Минкевича, С. С. Штейнберга, Н. Т. Гудцова, Н. С. Курнакова, А. А. Байкова, А. А. Бочвара, Г. В. Курдюмова и многих др.

    В настоящее время в народном хозяйстве повсеместно используют пластмассы и другие неметаллические материалы, создание которых стало возможным благодаря работам А. М. Бутлерова по теории химического строения органических соединений; С. В. Лебедева, обосновавшего промышленное производство синтетического каучука; В. А. Каргина, выполнившего структурные исследования полимерных материалов, и др.

    В судостроении применяют разнообразные материалы, число которых с каждым годом растет.

    Материал выбирают в зависимости от требований, которые предъявляются к судну, конструкции или детали (механическая прочность, долговечность, экономичность, надежность и т. д.). Благодаря правильному выбору можно повысить надежность и долговечность судна, увеличить его скорость и грузоподъемность, снизить массу, сократить эксплуатационные расходы, снизить стоимость и повысить производительность труда при постройке.

    Решить вопрос о пригодности материала для тех или других целей поможет, овладение материаловедением.

    В условиях научно-технического прогресса особенно важно развитие

    определяющих его областей науки, техники и производства. Практически нет ни одной отрасли машиностроения, приборостроения и строительства, в которой не применялись бы сварка и резка металлов. С помощью сварки получают неразъемные соединения почти всех металлов и сплавов различной толщины - от сотых долей миллиметра до нескольких метров.

    Влияние вредных примесей серы, фосфора и неметаллических включений на качество стали

    Сталь - это сплав железа с углеродом, где углерода до 2,14%. В стали всегда присутствуют и другие элементы - примеси, попадающие в сплав из природных соединений, и из металлолома, в процессе раскисления: марганец, кремний, сера, фосфор, никель, медь, хром, мышьяк и другие.

    Примеси в стали подразделяются на постоянные, случайные и вредные. Качество стали определяется содержанием вредных примесей.

    Основные вредные примеси - это сера и фосфор. "Сера и фосфор являются теми главными врагами, с которыми металлургам черных металлов приходится иметь дело" (А.А. Байков).

    Так же к вредным примесям относятся неметаллические включения - газы (азот, кислород, водород), за исключением мышьяка, они присутствуют во всех сталях. Вредными эти примеси прежде всего являются потому, что повышение их содержания понижает сопротивление проката хрупким разрушениям различной природы, особенно вредно эти примеси влияют на свойства сталей, эксплуатируемых при низких температурах. Одна из важных задач современной металлургии - сведение их содержания к разумному минимуму.

    Сера (S) попадает в сталь из чугуна (из золы и руды).

    S - 0,035 - 0,06% (0,018% S - качественная сталь). Сера нерастворима в железе, она образует с железом соединение FeS. Это соединение образуют с железом легкоплавкую эвтектику с температурой плавления - Тпл = 988?С.

    Наличие эвтектики вызывает красноломкость, т.е. хрупкость при высоких температурах. При нагреве до 1000-1200?С эвтектика, располагающая по границам зёрен, расплавляется и при деформации (ОМД) в стали возникают надрывы и трещины. Сера образует с ним

    Эвтемктика (греч. йutektos -- легкоплавящийся) -- жидкая система (раствор или расплав ), находящаяся при данном давлении в равновесии с твёрдыми фазами, число которых равно числу компонентов системы.

    Поэтому при нагреве стальных заготовок для пластической деформации сталь становится хрупкой. При горячей пластической деформации заготовка

    разрушается. Это явление называется красноломкостью. Одним из способов

    уменьшения влияния серы является введение марганца. Эти включения пластичны и не вызывают красноломкости.

    Вывозят серу из стали с помощью марганца. Марганец обладает большим сродством к сере, чем железо, и образует соединение MnS с высокой температурой плавления Тпл = 1620?С:

    FeS + Mn > MnS + Fe.

    Сера и её соединения при комнатных и пониженных температурах способствует снижению ударной вязкости стали, т. к. разрушение металла идёт по сульфидным включениям (поэтому ударная вязкость металла (KCU) снижается) (рис. 5).

    Рисунок 5. Влияние серы на вязкие свойства стали

    Также сера снижает пластичность - д, ш%.

    Сернистые включения ухудшают свариваемость и коррозионную стойкость. Сера облегчает обрабатываемость резанием.

    Фосфор (Р) содержится в пределах 0,025-0,045% Р. Попадает в сталь в процессе производства из руды, топлива, флюсов.

    Фосфор занимает особое место среди других элементов, присутствие которых отрицательно сказывается на качестве стали. С одной стороны, фосфор является легирующим элементом, сильно упрочняющим феррит и повышающим коррозионную стойкость проката в атмосферных условиях; с другой стороны, повышенное содержание фосфора в стали обусловливает появление хрупкости, снижение ударной вязкости и сопротивления хрупкому разрушению, а также увеличение склонности к образованию кристаллизационных трещин при сварке.

    Растворяясь в феррите, фосфор сильно искажает решетку и увеличивает пределы прочности и текучести, но уменьшает пластичность и вязкость. Сильное упрочняющее действие фосфора объясняется тем, что в феррите он замещает атомы железа, а так как его атом больше атомов железа, то это приводит к существенному упрочению, но также и к охрупчиванию. Кроме того, фосфор препятствует поперечному микроскольжению, увеличивая тем самым склонность к микроплоскому скольжению, при этом уменьшается количество плоскостей скольжения, особенно с понижением температуры, а также увеличивается склонность железа к двойникованию.

    Снижение вязкости тем значительнее, чем больше в стали фосфора.

    Фосфор значительно повышает порог хладноломкости.

    Каждая 0,01% Р повышает порог хладноломкости стали на 20 - 25?С (для углерода такое же влияние оказывает каждая 0,1%).

    Фосфор обладает большой склонностью к ликвации (неоднородность распределения). Фосфор скапливается в серединных слоях слитка, по границам зёрен, сильно снижая ударную вязкость.

    Фосфор (Р) - усиливает ковалентную (хрупкую) связь и ослабляет металлическую. С понижением температуры хрупкость металла увеличивается (хладноломкость) (рис. 6). Фосфор облегчает обрабатываемость стали режущим инструментом (создавая хрупкость). Совместное присутствие в стали фосфора и меди (Р + Сu) - повышает сопротивление коррозии.

    Рисунок 6. Влияние фосфора на хладноломкость стали (0,2% С, 1% Mn)

    Скрытые примеси:

    Так называют присутствующие в стали газы - азот, кислород, водород - ввиду сложности определения их количества. Газы попадают в сталь при её выплавке.

    В твёрдой стали они могут присутствовать, либо растворяясь в феррите, либо образуя химическое соединение (нитриды, оксиды). Газы могут находиться и в свободном состоянии в различных несплошностях.

    Даже в очень малых количествах азот, кислород и водород сильно ухудшают пластические свойства стали. Содержание их в стали допускается

    0,2 - 0,4 %. В результате вакуумирования стали их содержание уменьшается, свойства улучшаются.

    Кислород (О2): образует неметаллические включения оксиды - FeO, MnO, Al2O3, SiO2.

    Азот (N2): образует нитриды - Fe4N, Fe2N, AlN.

    Кислород и азот в свободном виде располагаются в раковинах, трещинах и др. Эти включения значительно уменьшают ударную вязкость, повышают порог хладноломкости и уменьшают пластичность, при этом повышается прочность стали (рис. 7).

    Рисунок 7. Влияние примесей внедрения кислорода (а) и азота (б) на вязкие свойства железа

    Водород (Н2): при затвердевании часть водорода в атомарном состоянии остаётся в стали. При переходе атомарного водорода в молекулярный повышается давление до 150 МПа, образуя эллипсовидные впадины - флокены, которые являются неисправимым браком. Флокены способствуют сильному охрупчиванию стали.

    Частично удалить водород с поверхностного слоя можно путём нагрева до 150-180?С, лучше всего в вакууме ~ 10-2 - 10-3 мм. рт. ст. или нагрев до 800?С и выдержке, водород уходит и остаётся чистый металл.

    Обработка стали синтетическим шлаком

    Технология применяется на крупнотоннажных печах емкостью 60-200 т в цехах, имеющих специальную печь для выплавки синтетического шлака. Обработка стали синтетическим шлаком заключается в следующем. В разливочный ковш перед выпуском стали из плавильного агрегата наливают 3...5 % по отношению к массе стали жидкого шлака, содержащего 55 % СаО, 42 % Al2O3, до 3 % SiO2 и 1 % FeO. В завалку вводят до 25% чугуна, известь (1.5-3.5%) и железную руду (2-3%). После расплавления проводят продувку ванны кислородом. Окислительный шлак сливают, в металл водят ферромарганец, рассчитывая на нижний предел содержания марганца в выплавляемой стали, и ферросилиций из расчета введения 0.15-0.20% кремния. Далее наводят небольшое количество (~ 1% от массы металла) известковистого шлака добавками извести, шамота, плавикового шпата. Восстановительный период, как таковой, отсутствует, вместо него проводиться кратковременная (~ 30 мин) доводка, в течение которой сталь доводят до заданных температуры и состава, вводя необходимые легирующие добавки. Раскисление шлака не производят.

    Перед выпуском стали из печи сливают 80-90% шлака. Далее выпускают сталь в ковш с залитым туда синтетическим шлаком, который обеспечивает рафинирование металла от серы и неметаллических включений. Во время выпуска в ковш вводят ферросилиций и при необходимости ферротитан и феррованадий. Обычно применяют синтетический известково-глиноземистый шлак (~ 55% CaO и 45% Al2O3), который заливают в ковш в количестве 4-6%.

    Затем в ковш по возможности с большей высоты мощной струёй выпускают выплавленную сталь. В результате интенсивного перемешивания стали и шлака поверхность их взаимодействия увеличивается в сотни раз по сравнению с той, которая имеется в печи. Поэтому процессы рафинирования резко ускоряются и для их протекания требуется уже не 1,5...2 ч, как обычно в печи, а примерно столько, сколько уходит на выпуск плавки.

    Рафинированная синтетическим шлаком сталь отличается низким содержанием кислорода, серы и неметаллических включений, что обеспечивает ей высокую пластичность и ударную вязкость.

    К числу рафинирующих переплавов относятся: электрошлаковый, вакуумно-дуговой, плазменно-дуговой, электронно-лучевой и др.

    2. По эскизу детали (рис. 7) разработайте эскиз отливки с модельно-литейными указаниями, приведите эскизы модели, стержневого ящика и собранной литейной формы (в разрезе). Опишите последовательность изготовления формы методом ручной формовки.

    Материал детали - сталь 45Л

    Вид поставки отливки ГОСТ 977-75.

    Заменитель стали: 35Л, 55Л, 50Л, 40Л.

    примесь сталь формовка отливка

    Таблица 1- Химический состав сталь 45Л

    Основные составляющие и обозначения

    Условные обозначения в марке стали

    Обозначение элемента по таблице Менделеева

    Состав в материале %

    Прочие составляющие

    марганец

    Не более 0.3

    Не более 0.3

    Не более 0.3

    Не более 0.045

    Не более 0.04

    обработка металлической заготовки давлением путём обжатия между вращающимися валками прокатного стана для уменьшения сечения слитка или заготовки и придания им нужной формы. На металлургических предприятиях осуществляется в два этапа. Сначала слитки нагревают и прокатывают на обжимных станах в заготовку. Размеры и форма заготовки зависят от её назначения: для прокатки листового и полосового металла применяют заготовки прямоугольного сечения шириной 400--2500 мм и толщиной 75--600 мм, называемые слябами; для сортового металла - заготовки квадратного сечения размером от 600 5 600 мм до 400 5 400 мм, а для цельнокатаных труб - круглого сечения диаметром 80--350 мм. Затем полученную заготовку прокатывают в товарный стальной прокат на станах трёх основных видов: листовых, сортовых и трубных. Стальные листы толщиной от 4 до 50 мм и плиты толщиной до 350 мм прокатывают на толстолистовых или броневых станах, а листы толщиной от 1.2 до 20 мм - на непрерывных станах, откуда они выходят в виде длинных (более 500 м) полос, которые сматываются в рулоны. Листы толщиной менее 1.5-3 мм прокатывают в холодном состоянии. Прокатка сортового металла осуществляется с нагревом до 1100-1250 °C последовательно в несколько приёмов для постепенного приближения сечения исходной заготовки к сечению готового профиля. Прокатка труб проводится, как правило, в горячем состоянии и включает три основные операции. Первая операция (прошивка) - образование отверстия в заготовке или слитке; в результате получается толстостенная труба, называемая гильзой. Операция выполняется на т. н. прошивных станах винтовой прокатки. Вторая операция (раскатка) - удлинение гильзы и уменьшение толщины её стенки; выполняется на различных прокатных станах: непрерывных, пилигримовых, винтовой прокатки и др. Третья операция - калибровка (или редуцирование) труб после раскатки; осуществляется на калибровочных станах. С целью уменьшения толщины стенки и диаметра трубы, получения более высоких механических свойств, гладкой поверхности и точных размеров трубы после горячей прокатки подвергаются холодной прокатке на специальных станах. После завершения прокатки полученные изделия разрезают на части требуемой длины, подвергают термической обработке, напр. отжигу (при необходимости), и проверяют их качество.

    С сер. 20 в. прокатка стальных заготовок заменяется непрерывным литьём (разливкой) на специальных разливочных машинах. Благодаря применению непрерывной разливки стали упраздняются слябинги и блюминги, повышается качество проката, устраняются потери, связанные с обработкой слитков, достигающие 15-20 %.

    По эскизу готовой детали (рис. 21) разработайте схему технологического процесса ее изготовления методом горячей объемной штамповки на паровоздушном молоте. При выполнении работы следует:

    1) описать сущность процесса горячей объемной штамповки и указать область ее применения;

    2) изобразить схему молота и описать его работу;

    3) установить температурный интервал штамповки и способ нагрева заготовки;

    4) составить чертеж поковки и определить ее массу;

    5) перечислить все технологических отходов определить объем и длину заготовки исходной заготовки;

    6) выбрать переходы штамповки и привести эскиз инструмента,

    7) перечислить операции технологического процесса, необходимые для получения данной поковки,

    8) описать механизм технологического процесса штамповки

    1. Горячей объемной штамповкой называется процесс горячего деформирования, при котором течение металла ограничено полостью ручья штампа.

    Течение металла происходит в результате силового воздействия машины-орудия через штамп на заготовку. При любом способе горячей объемной штамповки инструментом является штамп. Штамп состоит всегда из двух или более частей. Поверхности, по которым части штампа соприкасаются друг с другом, называются плоскостями разъема. На плоскостях разъема располагаются полости, являющиеся как бы отпечатком будущей поковки, которые называются ручьями. Нагретая до пластического состояния заготовка закладывается в ручей, когда штамп разомкнут. При сближении частей штампа металл заготовки начинает течь, заполняет ручей и принимает форму поковки. Поковки, полученные способом горячей объемной штамповки, имеют форму готовой детали с небольшими припусками на поверхностях, подлежащих механической обработке. Горячая объемная штамповка выгодна в условиях крупносерийного и массового производства и производится в кузнечных цехах. Этот способ широко применяется для получения поковок самой различной формы массой от 0,5 до 350 кг, а на специализированном оборудовании можно получить поковки массой до 1 т.

    Преимущества горячей объемной штамповки следующие:

    однородность и точность поковок,

    высокая производительность,

    возможность получения поковок сложной конфигурации.

    Главным недостатком процесса является высокая стоимость штампа. Способом горячей объемной штамповки можно получать поковки из всех металлов и сплавов, обладающих пластичностью в горячем состоянии.

    Данными способами получают весьма разнообразные по форме и размерам изделия из металла, пластмасс и других материалов с различными степенью точности размеров, механическими и другими характеристиками и качеством поверхности. Поэтому ковочно-штамповочное производство находит широкое применение в машиностроении и приборостроении, в производстве предметов народного потребления и других отраслях народного хозяйства. Получение изделий ковкой и штамповкой позволяет максимально приблизить исходную форму заготовки к форме и размерам готовой детали и тем самым уменьшить или полностью исключить дорогостоящие операции с потерей металла в стружку.

    2. Основными типами молотов для ковки являются приводные -паровоздушные и пневматические.

    Основным типом молотов являются паровоздушные штамповочные молоты. В молотах одностороннего действия (рис. 9) пар (сжатый воздух) служит только для подъема падающих частей в верхнее положение. Рабочий ход (ход вниз) совершается в этих молотах только под действием веса падающих частей.

    Рис. 9. Схема паровоздушного молота одностороннего действия: 1 - отверстие для прохода воздуха, 2 -- рабочий цилиндр, поршень, 3--шток, 4-- баба, 5 -- верхний боек (штамп), 7-нижний боек (штамп), 8 -- штамповая подушка, 9 -- шабот
    Рис. 10. Схема паровоздушного молота двустороннего действия:
    1 - поршень, 2 -- шток, 3 -- баба, 4 -- верхний боек (штамп), 5 - нижний боек (штамп). 6 -- шабот

    В молотах двустороннего действия (рис. 10) пар или сжатый воздух не только поднимает части в верхнее положение, но и давит сверху на поршень при рабочем ходе. Тем самым он увеличивает силу удара, разгоняя падающие части до более высокой скорости.

    В молотах одностороннего действия рабочий цикл начинается с подачи пара или сжатого воздуха из магистрали в нижнюю полость рабочего цилиндра 2 (см. рис. 9). Действуя на поршень 3, энергоноситель заставляет его двигаться вверх. С поршнем 3 связан шток 4, к нижнему концу которого крепится баба 5. На бабе 5 устанавливается верхний боек 6. Таким образом, при впуске пара или сжатого воздуха все падающие части поднимаются вверх.

    Вблизи верхней крышки по окружности цилиндра расположены отверстия Л через которые воздух, находящийся над поршнем, выходит в атмосферу.
    Когда поршень 3, поднимаясь вверх, доходит до отверстий 1 и перекрывает их, над поршнем оказывается замкнутое пространство. При дальнейшем ходе поршня вверх воздух, находящийся в этом пространстве, будет сжиматься. Таким образом, создается воздушная подушка, которая обеспечивает плавное торможение поршня в верхнем положении.

    Когда баба поднимается на достаточную высоту, парораспределительный механизм прекращает подачу энергоносителя в цилиндр и воздух из-под поршня выпускается в атмосферу. Давление в цилиндре резко уменьшается. Под действием собственного веса подвижные части падают вниз и боек 6 ударяет по заготовке, которая укладывается на нижний боек 7 (штамп). Он укрепляется в штамповой подушке 8, лежащей на шаботе 9.

    Молоты одностороннего действия имеют простое устройство и надежны в работе. Однако они имеют недостатки: велик расход энергоносителя, трудно регулировать скорость движения бабы, а значит, и силу удара, наконец, для нанесения удара такой же силы, как у молота двустороннего действия, масса подвижных частей молота одностороннего действия должна быть значительно больше. Поэтому молоты одностороннего действия в последнее время вы¬тесняются более совершенными молотами двустороннего действия. Пневматический молот. Наиболее распространённая конструкция такого молота дана на следующей схеме. В литной станине 10 расположены два цилиндра - компрессорный 9 и рабочий 5, полости которых сообщаются через золотники 7 и 6. Поршень 8 компрессорного цилиндра перемещается шатуном 14 от кривошипа 15, вращаемого электродвигателем 13 через шестерни 11 и 12 (редуктор). При перемещении поршня в компрессорном цилиндре воздух поочерёдно сжимается в верхней и нижней его полостях. Воздух, сжатый до 0,2-0,3 МН/м, при нажатии на педаль или рукоятку, открывающую золотники 7 и 6, поступает через них в рабочий цилиндр 5. Здесь он воздействует на поршень 4 рабочего цилиндра. Поршень 4, выполненный за одно целое с массивным штоком, является одновременно бабой молота, к которой крепят верхний боёк 3. В результате падающие части 3 и 4 периодически перемещаются вниз - вверх и наносят удары по заготовке, уложенной на нижний боёк 2, который неподвижно закреплён на массивном шаботе 1. В зависимости от положения органов управления молот может наносить единичные и автоматические удары регулируемой энергии, работать на холостом ходу, осуществлять силовой прижим поковки к нижнему бойку и держать бабу на весу.

    Пневматические молоты применяют для ковки мелких поковок (примерно до 20 кг) и изготовляют с массой падающих частей 50-1000 кг.

    Схема пневматического молота.

    3. При горячей деформации пластичность металла выше, а сопротивление деформированию ниже, поэтому она сопровождается меньшими энергетическими затратами. Нагрев металла при ОМД влияет на качество и стоимость продукции. Основные требования к нагреву: необходим равномерный прогрев заготовки по сечению и длине до соответствующей температуры за минимальное время с наименьшей потерей металла в окалину и экономным расходом топлива. Неправильный нагрев вызывает различные дефекты: трещины, обезуглероживание, повышенное окисление, перегрев и пережог.

    При медленном нагреве снижается производительность, увеличивается окисление и обезуглероживание поверхности заготовки. При перегреве (нагрев выше оптимального интервала ОМД) происходит рост зерна, что снижает механические свойства. Он исправляется нормальным отжигом путем нагрева до оптимальной температуры, выдержки и последующего медленного охлаждения вместе с печью. При пережоге, т.е. при нагреве до температуры близкой к температуре плавления, происходит оплавление границ зерен и появление трещин, что является неисправимым браком.

    Каждый металл и сплав имеют свой определенный температурный интервал горячей обработки давлением, который выбирается по таблицам в зависимости от марки сплава. Так, например, для углеродистых сталей температуру начала горячего деформирования выбирают по диаграмме состояния железо-цементит на 100 - 200 ?С ниже температуры плавления стали заданного химического состава, а температуру конца деформирования принимают на 50 - 100 ?С выше температуры рекристаллизации.

    Заготовки и слитки перед обработкой давлением нагревают в горнах или печах. Горны отличаются от нагревательных печей небольшими размерами, отапливаются каменным углем, коксом или мазутом, металл нагревается в них при непосредственном контакте с топливом. Их используют для нагрева мелких заготовок при ручной ковке. Печи для нагрева заготовок подразделяются на пламенные и электрические, а по распределению температуры - на камерные и методические. В камерных печах - печах периодического нагрева - температура одинакова по всему рабочему пространству. Методические печи с постоянно повышающейся температурой рабочего пространства от места загрузки заготовок к месту их выгрузки являются печами непрерывного действия.

    Механические свойства при Т=20 °С для 45Л

    Физические свойства для 45Л

    Вт/(м·град)

    Дж/(кг·град)

    Технологические свойства для 45Л

    Литейно-технологические свойства для 45Л

    Химический состав в % для 45Л

    Сталь для отливок обыкновенная используется для производства станин, зубчатых колёс и венцов, тормозных дисков, муфт, кожухов, опорных катков, звездочёк и т.п. - детали, к которым предъявляются требования повышенной прочности и высокого сопротивления износу и работающие под действием статических и динамических нагрузок.

    Трудносвариваемая - для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300°С при сварке, термообработка после сварки - отжиг

    Заменитель: 35Л , 55Л , 50Л , 40Л

    Механические свойства в сечениях до 100 мм (ГОСТ 977-75)

    Таблица 26 Температура плавления и заливки литейных сплавов

    Для получения отливок высокого качества заливку форм производят с

    соблюдением определенных требований, показателями которых являются:

    а) температура расплава;

    б) длительность заливки формы;

    в) характер поступления расплава в форму;

    г) степень заполнения литниковой чаши расплавом;

    д) высота струи;

    е) своевременность заливки формы; предупреждение попадания в форму шлака и неметаллических включений.

    Температура заливки расплава в форму определяется главным образом конструкцией отливок. Чем меньше толщина стенок и больше габаритные размеры отливки, тем выше должна быть температура заливаемого расплава. Заливку массивных отливок с целью уменьшения усадки производят расплавом с более низкой температурой.

    3. Единые принципы стандартизации систем допусков и посадок

    Системой допусков и посадок называют совокупность рядов допусков и посадок, закономерно построенных на основе опыта, теоретических и экспериментальных исследований и оформленных в виде стандартов.

    Система предназначена для выбора минимально необходимых, но достаточных для практики вариантов допусков и посадок типовых соединений деталей машин, дает возможность стандартизовать режущие инструменты и калибры, облегчает конструирование, производство и достижение взаимозаменяемости изделий и их частей, а также обусловливает повышение их качества.

    В настоящее время большинство стран мира применяет системы допусков и посадок ИСО. Системы ИСО созданы для унификации национальных систем допусков и посадок с целью облегчения международных технических связей в металлообрабатывающей промышленности. Включение международных рекомендаций ИСО в национальные стандарты создает условия для обеспечения взаимозаменяемости однотипных деталей, составных частей и изделий, изготовленных в разных странах. Советский Союз вступил в ИСО в 1977 году, а затем перешёл на единую систему допусков и посадок (ЕСДП) и основные кормы взаимозаменяемости, которые базируются на стандартах и рекомендациях ИСО.

    Основные нормы взаимозаменяемости включают системы допусков и посадок на цилиндрические детали, конуса, шпонки, резьбы, зубчатые передачи, и др. Системы допусков и посадок ИСО и ЕСДП для типовых деталей машин основаны на единых принципах построения, включающих:

    систему образования посадок и видов сопряжений;

    систему основных отклонений;

    уровни точности;

    единицу допуска;

    предпочтительные поля допусков и посадок;

    диапазоны и интервалы номинальных размеров;

    нормальную температуру.

    Система образования посадок и видов сопряжений предусматривает посадки в системе отверстия (СА) и в системе вала (СВ).

    Посадки в системе отверстия - это посадки, в которых различные зазоры и натяги получаются соединением различных валов с основным отверстием (рис. 3.1, а).

    Посадки в системе вала - это посадки, в которых различные зазоры и натяги получаются соединением различных отверстий с основным валом (рис. 3.1, б).

    Рис. 3.1. Примеры расположения полей допусков для посадок: а - в системе отверстия; б - в системе вала

    Для всех посадок в системе отверстия нижнее отклонение отверстия EI = 0, т. е. нижняя граница поля допуска основного отверстия, всегда совпадает с нулевой линией. Для всех посадок в системе вала верхнее отклонение основного вала es = 0, т. е. верхняя граница поля допуска вала всегда совпадает с нулевой линией.

    Поле допуска основного отверстия откладывают вверх, поле допуска основного вала - вниз от нулевой линии, т. е. в материал детали.

    Система основных отклонений представляет собой ряд основных отклонений валов в СА и отверстий в СВ, обозначаемых соответственно строчными и заглавными буквами латинского алфавита, например a, b, …, zb, zc; A, B, …, ZB, ZC.

    Значение основного отклонения определяется соответствующей буквой и зависит от номинального размера.

    В системах допусков и посадок разных типов деталей установлено разное число основных отклонений, наибольшее их количество содержится в системе допусков и посадок гладких цилиндрических деталей.

    Уровни точности могут называться по-разному: квалитеты точности - для гладких деталей, степени точности - для резьбовых деталей и зубчатых колёс или классы точности - для подшипников качения, но в любом случае они определяют требуемую ступень точности деталей для выполнения своих функций. Обозначаются уровни точности, как правило, арабскими цифрами, чем меньше цифра, тем выше уровень точности, т.е. точнее деталь.

    Единица допуска - это зависимость допуска от номинального размера, которая является мерой точности, отражающей влияние технологических, конструктивных и метрологических факторов. Единицы допуска в системах допусков и посадок установлены на основании исследований точности механической обработки деталей. Значение допуска можно рассчитать по формуле T = a·i , где a - число единиц допуска, зависящее от уровня точности (квалитет или степень точности); i - единица допуска.

    Предпочтительные поля допусков и посадок представляют собой совокупность отобранных из числа наиболее часто применяемых в производстве изделий полей допусков и составляемых из их числа посадок или видов сопряжений. Эти поля допусков и посадок составляют ряды предпочтительных и рекомендуемых и должны в первую очередь использоваться при проектировании изделий.

    Диапазоны и интервалы номинальных размеров учитывают влияние масштабного фактора на значение единицы допуска. В пределах одного диапазона размеров зависимость единицы допуска от номинального размера - постоянна. Например, в системе допусков и посадок гладких деталей для диапазона размеров от 1до 500 мм единица допуска равна;для диапазона размеров свыше 500 до 3150 мм единица допуска равна i = 0,004D + 2,1.

    Для построения рядов допусков каждый из диапазонов размеров, в свою очередь, разделен на несколькоинтервалов. Поскольку назначать допуск для каждого номинального размера экономически нецелесообразно для всех размеров, объединенных в один интервал, значения допусков приняты одинаковыми. В формулах единиц допусков в системе ИСО и ЕСДП в качестве размеров подставляют среднее геометрическое крайних размеров каждого интервала.

    Размеры по интервалам распределены так, чтобы допуски, подсчитанные по крайним значениям в каждом интервале, отличались от допусков, подсчитанных по среднему значению диаметра в том же интервале, не более чем на 5-8 %.

    Нормальная температура, при которой определены допуски и отклонения, устанавливаемые стандартами, принята равной + 20 °С (ГОСТ 9249-59). Такая температура близка к температуре рабочих помещений производственных помещений. Градуировку и аттестацию всех линейных и угловых мер и измерительных приборов, а также точные измерения следует выполнять при нормальной температуре, отступления от нее не должны превышать допускаемых значений, содержащихся в ГОСТ 8.050-73 (Государственная система измерений).

    Температура детали и измерительного средства в момент контроля должна быть одинаковой, что может быть достигнуто совместной выдержкой детали и измерительного средства в одинаковых условиях (например, на чугунной плите). Если температура воздуха в производственном помещении, контролируемой детали и измерительного средства стабилизированы и равны 20 °С, температурная погрешность измерения отсутствует при любой разности температурных коэффициентов линейного расширения. Таким образом, для устранения температурных погрешностей необходимо соблюдать нормальный температурный режим в помещениях измерительных лабораторий, инструментальных, механических и сборочных цехов.

    Размещено на www.allbest.

    ...

    Подобные документы

      Измерения и запись твердости по Виккерсу: достоинства и недостатки способа. Сравнительная характеристика способов разливки стали. Разработка эскиза отливки с модельно-литейными указаниями. Технология, оборудование и область применения свободной ковки.

      контрольная работа , добавлен 20.01.2012

      Углеродистые стали как основная продукция чёрной металлургии, характеристика их состава и компоненты. Влияние концентрации углерода, кремния и марганца, серы и фосфора в сплаве на свойства стали. Роль азота, кислорода и водорода, примесей в сплаве.

      контрольная работа , добавлен 17.08.2009

      Влияние неметаллических включений на надежность и долговечность машин и механизмов. Классификация неметаллических включений. Влияние на загрязненность стали рафинирующих переплавов. Основные металлографические признаки неметаллических включений.

      практическая работа , добавлен 23.01.2012

      Предельные размеры, допуски, натяги или зазоры. Построение схем полей допусков. Виды и система посадок. Определение допусков и посадок для гладких элементов деталей по ОСТ, по ЕСДП СЭВ. Посадка с натягом в системе отверстия. Допуск переходной посадки.

      контрольная работа , добавлен 26.02.2014

      Расчет и выбор посадок подшипников качения. Выбор посадок для сопряжения узла и их расчет. Построение полей допусков и расчеты размеров рабочих калибров. Определение и выбор посадки с зазором и с натягом. Расчет размерной цепи вероятностным методом.

      курсовая работа , добавлен 09.10.2011

      Выбор материала детали, описание эскиза и оценка технологичности конструкции. Разработка технологического процесса изготовления стальной отливки литьем в разовые песчаные формы. Точность отливки и определение допусков на её размеры, формовочные уклоны.

      курсовая работа , добавлен 26.02.2015

      Особенности выбора допуска и посадок для гладких цилиндрических соединений, выбор полей допусков для деталей, сопрягаемых с подшипниками качения. Выбор допусков и посадок шпоночных, шлицевых соединений. Расчет допусков размеров заданной размерной цепи.

      курсовая работа , добавлен 31.05.2010

      Расчет и выбор посадок гладких цилиндрических соединений. Метод аналогии, расчет посадки с натягом. Выбор допусков и посадок сложных соединений. Требования к точности размеров, формы, расположения и шероховатости поверхностей на рабочем чертеже.

      реферат , добавлен 22.04.2013

      Определение составляющих звеньев и выполнение эскиза размерной цепи. Расчет размерных цепей методом максимума-минимума: способ равных допусков и одного квалитета. Метод групповой взаимозаменяемости. Обоснование необходимых допусков для подшипников.

      курсовая работа , добавлен 24.09.2013

      Изучение особенностей различные соединения деталей: с натягом, с зазором. Техника выполнения расчётов для конструкций подшипников, выбор необходимых стандартных допусков и посадок для более точного изготовления деталей. Осуществление контроля размеров.

    Стали являются наиболее распространёнными материалами. Обладают хорошими технологическими свойствами. Изделия получают в результате обработки давлением и резанием.

    Достоинством является возможность получать нужный комплекс свойств, изменяя состав и вид обработки. Стали, подразделяют на углеродистые и легированные.

    Влияние углерода и примесей на свойства сталей

    Углеродистые стали являются основными. Их свойства определяются количеством углерода и содержанием примесей, которые взаимодействуют с железом и углеродом.

    Влияние углерода.

    Влияние углерода на свойства сталей показано на рис. 10.1

    Рис.10.1. Влияние углерода на свойства сталей

    С ростом содержания углерода в структуре стали увеличивается количество цементита, при одновременном снижении доли феррита. Изменение соотношения между составляющими приводит к уменьшению пластичности, а также к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%, а затем она уменьшается, так как образуется грубая сетка цементита вторичного.

    Углерод влияет на вязкие свойства. Увеличение содержания углерода повышает порог хладоломкости и снижает ударную вязкость.

    Повышаются электросопротивление и коэрцитивная сила, снижаются магнитная проницаемость и плотность магнитной индукции.

    Углерод оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием.

    Влияние примесей.

    В сталях всегда присутствуют примеси, которые делятся на четыре группы. 1.Постоянные примеси : кремний, марганец, сера, фосфор.

    Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.

    Содержание марганца не превышает 0,5…0,8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа FeS , так как образует с серой соединение сульфид марганца MnS . Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки.

    Располагаясь вблизи зёрен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин, Повышение содержания фосфора на каждую 0,01 % повышает порог хладоломкости на 20…25ºС.

    Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость.

    Для некоторых сталей возможно увеличение содержания фосфора до 0,10…0,15 %, для улучшения обрабатываемости резанием.

    Сера уменьшает пластичность, ухудшает свариваемость и коррозионную стойкость.

    Содержание серы в сталях составляет 0,025…0,06 %. Сера – вредная примесь, попадает в сталь из чугуна. При взаимодействии с железом образует химическое соединение – сульфид серы FeS , которое, в свою очередь, образует с железом легкоплавкую эвтектику с температурой плавления 988ºС. При нагреве под прокатку или ковку эвтектика плавится, нарушаются связи между зёрнами. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается – явление красноломкости .

    Красноломкость – повышение хрупкости при высоких температурах

    Сера снижает механические свойства, особенно ударную вязкость аи пластичность (и), а также предел выносливости. Она ухудшают свариваемость и коррозионную стойкость.

    2. Скрытые примеси — газы (азот, кислород, водород) – попадают в сталь при выплавке.

    Азот и кислород находятся в стали в виде хрупких неметаллических включений: окислов (FeO, SiO 2 , Al 2 O 3 ) нитридов (Fe 2 N ), в виде твердого раствора или в свободном состоянии, располагаясь в дефектах (раковинах, трещинах).

    Примеси внедрения (азот N , кислород О ) повышают порог хладоломкости и снижают сопротивление хрупкому разрушению. Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость.

    Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов.

    Флокены – тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен – хлопьев серебристого цвета.

    Металл с флокенами нельзя использовать в промышленности, при сварке образуются холодные трещины в наплавленном и основном металле.

    Если водород находится в поверхностном слое, то он удаляется в результате нагрева при 150…180 , лучше в вакууме мм рт. ст.

    Для удаления скрытых примесей используют вакуумирование.

    3. Специальные примеси, которые специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали — легированные сталями.

    Назначение легирующих элементов.

    Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100) ºС.

    Дополнительные легирующие элементы.

    Бор - 0.003%. Увеличивает прокаливаемость, а также повышает порог хладоломкости (+20…-60) ºС .

    Марганец – увеличивает прокаливаемость, однако содействует росту зерна и повышает порог хладоломкости до (+40…-60) ºС.

    Титан (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.

    Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до –20…-120 ºС . Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.

    Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает прочность и вязкость.

    Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.

    Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

    При легировании хромомарганцевых сталей кремнием получают, стали – хромансиль (20ХГС, 30ХГСА) . Стали обладают хорошим сочетанием прочности и вязкости, хорошо свариваются, штампуются и обрабатываются резанием.Кремний повышает ударную вязкость и температурный запас вязкости.

    Добавка свинца, кальция способствует улучшению обрабатываемость резанием. Применение упрочнения термической обработки улучшает комплекс механических свойств.

    Распределение легирующих элементов в стали.

    Легирующие элементы растворяются в основных фазах железоуглеродистых сплавов (феррит, аустенит, цементит), или образуют специальные карбиды.

    Растворение легирующих элементов происходит в результате замещения атомов железа атомами этих элементов. Эти атомы создают в решетке напряжения, которые вызывают изменение ее периода.

    Изменение размеров решётки вызывает изменение свойств феррита – прочность повышается, пластичность уменьшается. Хром, молибден и вольфрам упрочняют меньше, чем никель, кремний и марганец. Молибден и вольфрам, а твкже кремний и марганец в определенных количествах, снижают вязкость.

    В сталях карбиды образуются металлами, расположенными в таблице Менделеева левее железа (хром, ванадий, титан), которые имеют менее достроенную d –электронную полосу.

    В процессе карбидообразования углерод отдаёт свои валентные электроны на заполнение d электронной полосы атома металла, тогда как у металла валентные электроны образуют металлическую связь, обусловливающую металлические свойства карбидов.

    При соотношении атомных радиусов углерода и металла более 0,59 образуются типичные химические соединения: Fe 3 C, Mn 3 C, Cr 23 C 6 , Cr 7 C 3 , Fe 3 W 3 C – которые имеют сложную кристаллическую решетку и при нагреве растворяются в аустените.

    При соотношении атомных радиусов углерода и металла менее 0,59 образуются фазы внедрения: Mo 2 C, WC, VC, TiC, TaC, W 2 C – которые имеют простую кристаллическую решетку и трудно растворяются в аустените.

    Все карбиды обладают высокой твердостью и температурой плавления.

    4. Случайные примеси .

    Классификация и маркировка сталей

    Классификация сталей

    Стали классифицируются по множеству признаков.

    1. По химическому: составу: углеродистые и легированные.
    2. По содержанию углерода:

    а) низкоуглеродистые, с содержанием углерода до 0,25 %;
    б) среднеуглеродистые, с содержанием углерода 0,3…0,6 %;
    в) высокоуглеродистые, с содержанием углерода выше 0,7 %

    1. По равновесной структуре: доэвтектоидные, эвтектоидные, заэвтектоидные.
    1. По качеству. Количественным показателем качества является содержания вредных примесей: серы и фосфора:

    а) углеродистые стали обыкновенного качества:
    б) качественные стали;
    в) высококачественные стали.

    1. По способу выплавки:

    а) в мартеновских печах;
    б) в кислородных конверторах;
    в) в электрических печах: электродуговых, индукционных и др.

    1. По назначению:

    а) конструкционные – применяются для изготовления деталей машин и механизмов;
    б) инструментальные – применяются для изготовления различных инструментов;
    в) специальные – стали с особыми свойствами: электротехнические, с особыми магнитными свойствами и др.

    Маркировка сталей

    Принято буквенно-цифровое обозначение сталей

    Углеродистые стали обыкновенного качества (ГОСТ 380).

    Маркируются: Ст.2кп., БСт.3кп, ВСт.3пс, ВСт.4сп.

    Ст – индекс данной группы стали. Цифры от 0 до 6 — это условный номер марки стали. С увеличением номера марки возрастает прочность и снижается пластичность стали. По гарантиям при поставке существуют три группы сталей: А, Б и В. Для сталей группы А при поставке гарантируются механические свойства, в обозначении индекс группы А не указывается. Для сталей группы Б гарантируется химический состав. Для сталей группы В при поставке гарантируются и механические свойства, и химический состав.

    Индексы кп, пс, сп указывают степень раскисленности стали: кп — кипящая, пс — полуспокойная, сп — спокойная.

    Качественные углеродистые стали

    Качественные стали поставляют с гарантированными механическими свойствами и химическим составом (группа В). Степень раскисленности в основном спокойная.

    Конструкционные качественные углеродистые стали. Маркируются двухзначным числом, указывающим среднее содержание углерода в сотых долях процента. Указывается степень раскисленности, если она отличается от спокойной.

    Сталь 08 кп, сталь 10 пс, сталь 45.

    Инструментальные качественные углеродистые стали маркируются буквой У (углеродистая инструментальная сталь) и числом, указывающим содержание углерода в десятых долях процента.

    Сталь У8, сталь У13.

    Инструментальные высококачественные углеродистые стали. Маркируются аналогично качественным инструментальным углеродистым сталям, только в конце марки ставят букву А для обозначения высокого качества стали.

    Сталь У10А.

    Качественные и высококачественные легированные стали

    Обозначение буквенно-цифровое. Легирующие элементы имеют условные обозначения, Обозначаются буквами русского алфавита.

    Обозначения легирующих элементов:

    Х – хром, Н – никель, М – молибден, В – вольфрам, К – кобальт, Т – титан, А – азот (указывается в середине марки), Г – марганец, Д – медь, Ф – ванадий, С – кремний, П – фосфор, Р – бор, Б – ниобий, Ц – цирконий, Ю – алюминий.

    Легированные конструкционные стали

    Сталь 15Х25Н19ВС2

    В начале марки указывается двухзначное число, показывающее содержание углерода в сотых долях процента. Далее перечисляются легирующие элементы. Число, следующее за условным обозначением элемента, показывает его содержание в процентах,

    Если число не стоит, то содержание элемента не превышает 1,5 %.

    В указанной марке стали содержится 0,15 % углерода, 35% хрома, 19 % никеля, до 1,5% вольфрама, до 2 % кремния.

    Для обозначения высококачественных легированных сталей в конце марки указывается символ А.

    Легированные инструментальные стали

    Сталь 9ХС, сталь ХВГ.

    В начале марки указывается однозначное число, показывающее содержание углерода в десятых долях процента. При содержании углерода более 1 %, число не указывается,

    Все легированные инструментальные стали – высококачественные.

    Некоторые стали имеют нестандартные обозначения.

    Быстрорежущие инструментальные стали

    Р – индекс данной группы сталей (от rapid – скорость). Содержание углерода более 1%. Число показывает содержание основного легирующего элемента – вольфрама.

    В указанной стали содержание вольфрама – 18 %.

    Если стали содержат легирующие элемент, то их содержание указывается после обозначения соответствующего элемента.

    Шарикоподшипниковые стали

    Сталь ШХ6, сталь ШХ15ГС

    Ш – индекс данной группы сталей. Х – указывает на наличие в стали хрома. Последующее число показывает содержание хрома в десятых долях процента, в указанных сталях, соответственно, 0,6 % и 1,5 %. Также указываются входящие с состав стали легирующие элементы. Содержание углерода более 1 %.

    Резко отрицательное действие на хладостойкость оказывают вредные примеси: фосфор и сера. Растворяясь в феррите, фосфор заметно искажает кристаллическую решетку твердого раствора и повышает температуру перехода в твердое состояние. Охрупчивающее влияние фосфора усиливается при обогащении им межзеренных границ благодаря развитию ликвационных процессов. Обогащение фосфором границ аустенитных зерен может также явиться следствием перераспределения примесей из-за неодновременного протекания процессов превращения неравновесных структур. Обратимая отпускная хрупкость способствует не только абсолютному уменьшению уровня ударной вязкости, но и существенному повышению порога хладноломкости. Легирование молибденом снижает как склонность стали к отпускной хрупкости, так и порог хладноломкости. Повышение содержания фосфора на 0,01 % в литой стали 35Л увеличивает критическую температуру хрупкости на 20 °С.

    В отличие от фосфора сера практически нерастворима в феррите и присутствует в стали в виде сульфидов. Сернистые включения могут иметь вид обособленных сульфидов и в виде строчек располагаются по границам зерен. Последний вид включений особенно вреден с точки зрения хладостойкой стали, так как приводит к ослаблению границ зерен и затрудняет пластическую деформацию. Введение марганца в жидкую сталь приводит к образованию сульфида марганца вместо сульфида железа, что несколько уменьшает вредное влияние серы. Однако сульфиды марганца пластичны при температурах горячего деформирования и не улучшают ударную вязкость в направлении, перпендикулярном направлению прокатки. Увеличение содержания серы в литой стали 25Л от 0,02 до 0,05 % более чем в два раза снижает ударную вязкость при –40 °С.

    Действие вредных примесей, особенно серы, может быть существенно ослаблено модифицированием за счет введения в жидкую сталь кальция и редкоземельных металлов (РЗМ). Модифицирование кальцием способствует снижению концентрации серы, формированию более мелких трудно деформируемых неметаллических включений, имеющих более благоприятную глобулярную форму. Ударная вязкость возрастает в 1,5–2 раза, резко уменьшается скорость распространения усталостной трещины, увеличиваются характеристики вязкости разрушения.

    Введение кальция существенно влияет на тип и распределение неметаллических включений, способствуя образованию более мелких равноосных глобулярных комплексных включений. Дополнительное введение бария в кальцийсодержащую сталь способствует еще большему измельчению неметаллических включений и их равномерному распределению в матрице.

    РЗМ, вводимые в жидкую сталь, не входят в состав твердого раствора, не обогащают границ зерен, а полностью находятся в неметаллических включениях глобулярной формы. При введении небольших добавок РЗМ (до 0,15 %) они вступают во взаимодействие только с серой и кислородом. С увеличением добавок РЗМ до 0,4 % возрастает вероятность связывания ими фосфора, мышьяка, сурьмы и др. в неметаллические включения, что уменьшает опасность охрупчивания стали при понижении температуры. При этом достигается более существенное снижение порога хладноломкости и, кроме того, уменьшается склонность стали к обратимой отпускной хрупкости.

    Эффективным технологическим приемом, позволяющим существенно повысить хладостойкость литых сталей, является обработка их комплексными лигатурами, содержащими редкоземельные и щелочноземельные металлы (ЩЗМ). Однако десульфирующая и модифицирующая способность подобных лигатур в значительной мере определяется степенью раскисленности стали. Это объясняется тем, что РЗМ и ЩЗМ обладают высоким сродством как к кислороду, так и к сере, и в случае низкого содержания алюминия в стали в основном расходуются на раскисление. С увеличением концентрации алюминия содержание несвязанного кислорода в стали уменьшается и, следовательно, вероятность взаимодействия РЗМ и ЩЗМ с серой возрастает. Так, для стали 12ХГФЛ, обработанной лигатурой ЩЗМ, степень десульфурации (9 %) оказалась при содержании алюминия 0,015 %, при увеличении концентрации алюминия до 0,055 % степень десульфурации возросла до 46 % (рис. 13.8).

    Рис. 13.8. Влияние алюминия и ЩЗМ на ударную вязкость стали 12ХГФЛ:

    1 - без обработки ЩЗМ, 2 - с обработкой ЩЗМ

    При концентрации остаточного алюминия в стали менее 0,03 % наблюдается падение ударной вязкости, связанное с присутствием пленок сульфидных эвтектик, располагающихся по границам зерен (второй тип включений по классификации Симса и Даля). В этом случае обработка стали комплексным сплавов малоэффективна в связи с тем, что основная часть его расходуется на раскисление, а загрязненность его пленочными сульфидами практически не меняется.

    Повышение ударной вязкости стали, обработанной ЩЗМ, наблюдается при относительно высоких (более 0,03 %) концентрациях алюминия. Металлографические исследования показали, что кальций в этом случае принимает активное участие в формировании оксисульфидных глобулярных включений. Это подтверждено микрорентгеноспектральным анализом, проведенным как на шлифах, так и на изломах образцов после ударных испытаний. При этом распределение включений в объеме металла приобретает более равномерный характер, а общий индекс загрязненности стали снижается на 25–30 %. Кроме того, существенно уменьшаются размеры включений (характерный размер включений без обработки лигатурой составляет 3,75–8,75 мкм, а в стали, обработанной лигатурой, - 1,25–6,25 мкм).



    Вследствие того, что сульфиды кальция и сульфиды марганца образуют ряд твердых растворов с высокой температурой плавления, происходит выделение комплексных сульфидов на более ранней стадии кристаллизации стали. Комплексные сульфидные включения, содержащие CaS, хорошо ассимилируются известково-глиноземными расплавами - продуктами раскисления. Поэтому в стали, раскисленной алюминием и ЩЗМ, выделяющаяся оксидная фаза оказывается в сульфидной оболочке. В этом случае оксидные сегрегации Al 2 O 3 остроугольной формы превращаются в глобулярные, равномерно распределенные в объеме металла, частицы, что существенно уменьшает их отрицательное влияние как концентраторов напряжений.

    Из газов, растворенных в стали, особенно неблагоприятное действие на хладостойкость оказывает водород. Водород в стали может находиться либо в твердом растворе внедрения в виде атомов или ионов, либо в молекулярной форме. В последнем случае он располагается в порах, иногда называемых коллекторами водорода, причем давление водорода в коллекторах может достигать значительных величин. При повышенных температурах и давлении водород может взаимодействовать с углеродом с образованием метана СН 4 . Реакция образования метана протекает преимущественно по границам зерен, что ослабляет связь между ними. Внутреннего давления водорода в порах недостаточно для образования трещин. Разрушение развивается при миграции водорода в очаг деформации перед растущей трещиной. Подвижность водорода и его способность легко перемещаться вместе с дислокациями приводит к скоплению водорода в местах концентрации напряжений, на границе включение - матрица, что способствует хрупкому разрушению стали, особенно при низких температурах.

    Эффективное очищение стали от вредных примесей и газов достигается при использовании установок внепечного рафинирования и вакуумирования (УВРВ). В них наводится высокоактивный шлак, применяется вакуумное раскисление углеродом и дегазация. В табл. 13.2 приведены некоторые показатели выплавки толстолистовой высокопрочной среднелегированной стали марки 35Х2Н4МДФА по двум вариантам. Первый вариант предусматривал обработку полупродукта на УВРВ с применением РЗМ для раскисления и десульфурации, вакуумирование, раскисление кремнием на 0,15–0,18 % и окончательное раскисление алюминием из расчета 0,3 кг/т с введением РЗМ в количестве также 0,3 кг/т. Второй вариант предусматривал обычную мартеновскую выплавку с раскислением, аналогичным первому варианту.

    Обработка на УВРВ позволяет существенно уменьшить содержание вредных примесей, газов и неметаллических включений, что благоприятно влияет на уровень механических свойств при низких температурах.

    На рис. 13.9 приведены температурные зависимости ударной вязкости, доли вязкой составляющей в изломе при испытании на статический изгиб образцов с надрезом и статической трещиностойкости, определенной на компактных образцах.